|
Herborg, L. - M., Thomas, D. N., Kennedy, H., Haas, C., & Dieckmann, G. S. (2001). Dissolved carbohydrates in Antarctic sea ice. Antarct Sci, 13(2), 119–125.
Abstract: Concentrations of dissolved monocarbohydrates (MCHO) and polycarbohydrates (PCHO) were analysed in a variety of ice habitats from summer Weddell Sea sea ice (surface ponds, ice cores, gap layers and platelet ice). The dissolved organic carbon (DOC) pool in these habitats was also measured and the contribution of carbohydrate to this pool was assessed. The DOC concentrations within all sea ice habitats were high compared to surface seawater concentrations with values up to 958µMC being measured. Total carbohydrates (TCHO) were highest in the ice cores and platelet ice samples, up to 3 1% of the DOC pool, a reflection of the high algal biomass in these two habitat classes. TCHO in the other habitats ranged between 10% and 29% of DOC. The ratios of MCHO to PCHO varied considerably between the ice habitats: in surface ponds and ice cores MCHO was 70% of the TCHO pool, whereas in gap layers and platelet ice there were lower PCHO concentrations resulting in MCHO being 88% of TCHO.
Keywords: Doc; Mcho; Pcho; sea ice; bacteria; carbon cycling; diatoms; dissolved organic carbon; monocarbohydrates; polycarbohydrates
|
|
|
Hulatt, C. J., & Thomas, D. N. (2010). Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresour Technol, 101(22), 8690–8697.
Abstract: Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.
Keywords: Bioreactors/*microbiology; Chlorella vulgaris/*physiology; Culture Media/chemistry; *Electric Power Supplies; Energy Transfer; Organic Chemicals/*chemistry/*metabolism; Photochemistry/*instrumentation; Solubility
Notes: PMID:20634058
|
|
|
Hulatt, C. J., & Thomas, D. N. (2011). Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol, 102(10), 5775–5787.
Abstract: This work examined the energy return of Chlorella vulgaris and Dunaliella tertiolecta cultivated in a gas-sparged photobioreactor design where the power input for sparging was manipulated (10, 20, and 50 Wm(-3)). Dry weight, organic carbon and heating values of the biomass were measured, plus a suite of variables including Fv/Fm and dissolved oxygen. A model for predicting the higher heating value of microalgal biomass was developed and used to measure the energetic performance of batch cultivations. High power inputs enhanced maximum biomass yields, but did not improve the energy return. Cultivation in 10 Wm(-3) showed up to a 39% higher cumulative net energy return than 50 Wm(-3), and increased the cumulative net energy ratio up to fourfold. The highest net energy ratio for power input was 19.3 (D. tertiolecta, 12% CO(2), 10 Wm(-3)). These systems may be a sustainable method of biomass production, but their effectiveness is sensitive to operational parameters.
Keywords: *Bioreactors; Carbon Dioxide/*metabolism; Energy Metabolism; Equipment Design; Microalgae/growth & development/*metabolism; Photochemistry
Notes: PMID:21376576
|
|
|
Hulatt, C. J., & Thomas, D. N. (2011). Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol, 102(12), 6687–6695.
Abstract: This work examined the energetic performance of a 6-month semi-continuous cultivation of Scenedesmus obliquus in an outdoor photobioreactor at mid-temperate latitude, without temperature control. By measuring the seasonal biomass production (mean 11.31, range 1.39-23.67 g m(-2)d(-1)), higher heating value (22.94 kJ g(-1)) and solar irradiance, the mean seasonally-averaged photosynthetic efficiency (2.18%) and gross energy productivity (0.27 MJ m(-2) d(-1)) was calculated. When comparing the solar energy conversion efficiency to the energy investment for culture circulation, significant improvements in reactor energy input must be made to make the system viable. Using the data collected to model the energetic performance of a substitute photobioreactor design, we conclude that sustainable photobioreactor cultivation of microalgae in similar temperate climates requires a short light path and low power input, only reasonably obtained by flat-panel systems. However, temperature control was not necessary for effective long-term cultivation.
Keywords: Biomass; *Bioreactors; Climate; Geography; Microalgae/growth & development/*metabolism; Oxygen/metabolism; Scenedesmus/growth & development/*metabolism; Seasons; Solar Energy
Notes: PMID:21511466
|
|
|
Kaartokallio, H., Kuosa, H., Thomas, D. N., Granskog, M. A., & Kivi, K. (2006). Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biol, 30(2), 183–197.
Abstract: A study was undertaken to examine the activity and composition of the seasonal Baltic Sea land-fast sea-ice biota along a salinity gradient in March 2003 in a coastal location in the SW coast of Finland. Using a multi-variable data set, the less well-known algal and protozoan communities, and algal and bacterial production in relation to the physical and chemical environment were investigated. Also, the first coincident measurements of bacterial production and dissolved organic matter (DOM) in a sea-ice system are reported. Communities in sea ice were clearly autotrophy-dominated with algal biomass representing 79% of the total biomass. Protozoa and rotifers made up 18% of biomass in the ice and bacteria only 3%. Highest biomasses were found in mid-transect bottom ice. Water column assemblages were clearly more heterotrophic: 39% algae, 12% bacteria and 49% for rotifers and protozoa. Few significant correlations existed between DOM and bacterial variables, reflecting the complex origin of ice DOM. Dynamics of dissolved organic carbon, nitrogen and phosphorus (DOC, DON and DOP) were also uncoupled. A functional microbial loop is likely to be present in the studied ice. Existence of an under-ice freshwater plume affects the ecosystem functioning: Under-ice water communities are influenced directly by river-water mixing, whereas the ice system seems to be more independent–the interaction mainly taking place through the formation of active bottom communities.
Notes: Sampling: Nine stations along a 40km salinity gradient from inner Pojo Bay through the Archipelago to the edge of the open sea
|
|