|
Abstract |
Distribution of photoassimilated carbon into major metabolite classes differed between two Antarctic diatom species, Nitzschia curta and a small unicellular Chaetoceros sp.. Time course uptake studies (over 54 h) revealed that¹?C allocation appeared to be equilibrated after approximately 8 h at light saturated photosynthesis. During short term dark periods (6 h), polysaccharides as well as low-molecular-weight compounds were catabolised to sustain protein synthesis in the dark, whilst lipid reserves were not mobilised for this process. Experiments with these two species were conducted at 0 and -1.5 degree C, although no difference in the distribution of radiolabel was measured between the two temperatures. It is hypothesised that under near-optimal conditions fast growing species are characterised by a high carbon turnover associated with a rapid flow of newly assimilated carbon into polymeric compound classes. On the other hand, slower growing species (such as N. curta) may store a significant amount of surplus carbon in the low-molecular-weight metabolite fraction. Species specific preferences were observed when comparing the accumulation of radiolabel into the lipid pools. |
|