toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Arrigo, K.R.; Thomas, D.N. url  openurl
  Title Large scale importance of sea ice biology in the Southern Ocean Type Journal Article
  Year 2004 Publication Antarctic Science Abbreviated Journal Antarct Sci  
  Volume 16 Issue 4 Pages 471-486  
  Keywords algae; Antarctic; biogeochemistry; carbon cycle; primary production; Full Data Records  
  Abstract Despite being one of the largest biomes on earth, sea ice ecosystems have only received intensive study over the past 30 years. Sea ice is a unique habitat for assemblages of bacteria, algae, protists, and invertebrates that grow within a matrix dominated by strong gradients in temperature, salinity, nutrients, and UV and visible radiation. A suite of physiological adaptations allow these organisms to thrive in ice, where their enormous biomass makes them a fundamental component of polar ecosystems. Sea ice algae are an important energy and nutritional source for invertebrates such as juvenile krill, accounting for up to 25% of total annual primary production in ice-covered waters. The ability of ice algae to produce large amounts of UV absorbing compounds such as mycosporine-like amino acids makes them even more important to organisms like krill that can incorporate these sunscreens into their own tissues. Furthermore, the nutrient and light conditions in which sea ice algae thrive induce them to synthesize enhanced concentrations of polyunsaturated fatty acids, a vital constituent of the diet of grazing organisms, especially during winter. Finally, sea ice bacteria and algae have become the focus of biotechnology, and are being considered as proxies of possible life forms on ice-covered extraterrestrial systems. An analysis of how the balance between sea ice and pelagic production might change under a warming scenario indicates that when current levels of primary production and changes in the areas of sea ice habitats are taken into account, the expected 25% loss of sea ice over the next century would increase primary production in the Southern Ocean by approximately 10%, resulting in a slight negative feedback on climate warming.  
  Address  
  Corporate Author Thesis  
  Publisher Cambridge University Press Place of Publication Cambridge Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-1020 ISBN Medium  
  Area Expedition Conference  
  Notes Review Approved no  
  Call Number refbase @ admin @ Arrigo+Thomas2004 Serial 729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: