refbase Beta Database
Home
|
Show All
|
Simple Search
|
Advanced Search
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
contains:
...
1–1 of 1 record found matching your query (
RSS
):
Search & Display Options
Search within Results:
Field:
author
title
year
keywords
abstract
type
publication
abbrev_journal
volume
issue
pages
thesis
publisher
place
editor
series_title
language
area
notes
call_number
serial
contains:
...
Exclude matches
Display Options:
Field:
all fields
keywords & abstract
additional fields
records per page
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Record
Links
Author
Giuliano, A.; Freda, C.; Catizzone, E.
Title
Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the WaterGas Shift and Carbon Capture Sections
Type
Journal Article
Year
2020
Publication
Bioengineering
Abbreviated Journal
Volume
7
Issue
3
Pages
70
Keywords
methanol synthesis
Abstract
The biomass-to-methanol process may play an important role in introducing renewables in the industry chain for chemical and fuel production. Gasification is a thermochemical process to produce syngas from biomass, but additional steps are requested to obtain a syngas composition suitable for methanol synthesis. The aim of this work is to perform a computer-aided process simulation to produce methanol starting from a syngas produced by oxygensteam biomass gasification, whose details are reported in the literature. Syngas from biomass gasification was compressed to 80 bar, which may be considered an optimal pressure for methanol synthesis. The simulation was mainly focused on the watergas shift/carbon capture sections requested to obtain a syngas with a (H2 CO2)/(CO + CO2) molar ratio of about 2, which is optimal for methanol synthesis. Both capital and operating costs were calculated as a function of the CO conversion in the watergas shift (WGS) step and CO2 absorption level in the carbon capture (CC) unit (by Selexol\® process). The obtained results show the optimal CO conversion is 40% with CO2 capture from the syngas equal to 95%. The effect of the WGS conversion level on methanol production cost was also assessed. For the optimal case, a methanol production cost equal to 0.540 ¬/kg was calculated.
Address
Corporate Author
Thesis
Publisher
Multidisciplinary Digital Publishing Institute
Place of Publication
Editor
Language
Summary Language
Original Title
Series Editor
Series Title
Abbreviated Series Title
Series Volume
Series Issue
Edition
ISSN
ISBN
Medium
Area
Expedition
Conference
Notes
Approved
no
Call Number
refbase @ user @ giulianoTechnoEconomicAssessmentBioSyngas2020
Serial
17637
Permanent link to this record
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Home
Library Search
|
Show Record
|
Extract Citations
Help