toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Lakaniemi, A.-M.; Hulatt, C.J.; Thomas, D.N.; Tuovinen, O.H.; Puhakka, J.A. url  doi
  Title Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass Type Journal Article
  Year 2011 Publication Biotechnology for Biofuels Abbreviated Journal Biotechnol Biofuels  
  Volume 4 Issue 1 Pages 34  
  Abstract BACKGROUND: Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. RESULTS: Anaerobic serum bottle assays were conducted at 37 degrees C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. CONCLUSIONS: H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production.  
  Address Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-6834 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21943287; PMCID:PMC3193024 Approved no  
  Call Number refbase @ user @ Serial 12985  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: