|
Record |
Links |
|
Author  |
Hulatt, C.J.; Thomas, D.N. |

|
|
Title |
Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Bioresource Technology |
Abbreviated Journal |
Bioresour Technol |
|
|
Volume |
102 |
Issue |
10 |
Pages |
5775-5787 |
|
|
Keywords |
*Bioreactors; Carbon Dioxide/*metabolism; Energy Metabolism; Equipment Design; Microalgae/growth & development/*metabolism; Photochemistry |
|
|
Abstract |
This work examined the energy return of Chlorella vulgaris and Dunaliella tertiolecta cultivated in a gas-sparged photobioreactor design where the power input for sparging was manipulated (10, 20, and 50 Wm(-3)). Dry weight, organic carbon and heating values of the biomass were measured, plus a suite of variables including Fv/Fm and dissolved oxygen. A model for predicting the higher heating value of microalgal biomass was developed and used to measure the energetic performance of batch cultivations. High power inputs enhanced maximum biomass yields, but did not improve the energy return. Cultivation in 10 Wm(-3) showed up to a 39% higher cumulative net energy return than 50 Wm(-3), and increased the cumulative net energy ratio up to fourfold. The highest net energy ratio for power input was 19.3 (D. tertiolecta, 12% CO(2), 10 Wm(-3)). These systems may be a sustainable method of biomass production, but their effectiveness is sensitive to operational parameters. |
|
|
Address |
School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Isle of Anglesey LL59 5AB, UK. osp418@bangor.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0960-8524 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:21376576 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12983 |
|
Permanent link to this record |