|   | 
Details
   web
Records
Author Nugent, M.; Young, S.W.; Frampton, C.M.; Hooper, G.J.
Title The lifetime risk of revision following total hip arthroplasty: a New Zealand Joint Registry study Type Journal Article
Year (down) 2021 Publication The Bone & Joint Journal Abbreviated Journal The Bone & Joint Journal
Volume 103-B Issue 3 Pages 479-485
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2049-4394 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ admin @ Serial 17739
Permanent link to this record
 

 
Author de Arquer, F.P.G.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A.R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; Li, Y.C.; Li, F.; Edwards, J.; Richter, L.J.; Thorpe, S.J.; Sinton, D.; Sargent, E.H.
Title CO2 Electrolysis to Multicarbon Products at Activities Greater than 1 A Cm-2 Type Journal Article
Year (down) 2020 Publication Science Abbreviated Journal
Volume 367 Issue 6478 Pages 661-666
Keywords
Abstract Electrode architecture reconciles the hydrophobic nature of CO2 with the need for nearby water to reduce it to ethylene. Electrode architecture reconciles the hydrophobic nature of CO2 with the need for nearby water to reduce it to ethylene.
Address
Corporate Author Thesis
Publisher American Association for the Advancement of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075, 1095-9203 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ arquerCO2ElectrolysisMulticarbon2020 Serial 17592
Permanent link to this record
 

 
Author Beisswenger, L.
Title Reaktionstechnische Untersuchungen zur Hydrierung von CO2 zu Fischer-Tropsch-Produkten Type Book Whole
Year (down) 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Bei der Hydrierung von CO2 zu Fischer-Tropsch-Produkten in einem einstufigen Prozess wird die endotherme reverse Wassergas-Shift-Reaktion mit der exothermen Fischer-Tropsch-Reaktion kombiniert. Dadurch kann das entstehende CO direkt weiter reagieren, wodurch das Gleichgewicht der reversen Wassergas-Shift-Reaktion zur Produktseite hin verschoben wird. Im Rahmen dieser Arbeit wurden Vorversuche in einem diskontinuierlich betriebenen Versuchsaufbau durchgeführt. Dabei konnten erste Erkenntnisse bezüglich der Druckabhängigkeit der Reaktion sowie der Produktzusammensetzung in Abhängigkeit von der Reaktionsdauer gewonnen werden. Weiterhin wurde eine Versuchsapparatur mit kontinuierlich betriebenem Reaktor in mehreren Iterationsschritten optimiert, um die Reproduzierbarkeit der Messdaten zu verbessern. Mit Hilfe der optimierten kontinuierlichen Versuchsanlage wurden reaktionstechnische Untersuchungen an unterschiedlichen Katalysatorsystemen durchgeführt. Anhand dieser Versuche gelang es, Zusammenhänge zwischen verschiedenen Reaktionsparametern und den entstehenden Produkten zu erkennen. Auß erdem wurde ein Modellkatalysator auf Basis von anodischem Aluminiumoxid präpariert und kontinuierlichen Performancemessungen unterzogen. Die Charakterisierung der Katalysatoren erfolgte mittels Röntgendiffraktometrie, Argon-Physisorption, optischer Emissionsspektrometrie mit induktiv gekoppeltem Plasma, Rasterelektronenmikroskopie und energiedispersiver Röntgenspektroskopie.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Technische Universität Place of Publication Darmstadt Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ beisswengerReaktionstechnischeUntersuchungenZur2020 Serial 17598
Permanent link to this record
 

 
Author Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S.
Title Power-to-Liquid via Synthesis of Methanol, DME or FischerTropsch-Fuels: A Review Type Journal Article
Year (down) 2020 Publication Energy & Environmental Science Abbreviated Journal
Volume 13 Issue 10 Pages 3207-3252
Keywords
Abstract A review of power-to-liquid for methanol, DME and FT-fuels focusing on commercial synthesis technologies and current power-to-liquid concepts. , The conversion of H 2 and CO 2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases, the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However, PtL poses new challenges for the synthesis: away from syngas-based, continuously run, large-scale plants towards more flexible, small-scale concepts with direct CO 2 -utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol, DME and Fischer Tropsch-fuels. It should serve as a benchmark for future concepts, guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels, several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO 2 hydrogenation offers advantages through less by-product formation and lower heat development. However, increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency, operational experience from laboratory tests and pilot plants is still missing. Furthermore, four major process routes for power-to-DME are possible, requiring additional research to determine the optimal concept. In the case of Fischer Tropsch synthesis, catalysts for direct CO 2 utilisation are still in an early stage. Consequently, todays Fischer Tropsch-based PtL requires a shift to syngas, benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692, 1754-5706 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ dieterichPowertoliquidSynthesisMethanol2020 Serial 17613
Permanent link to this record
 

 
Author Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S.
Title Power-to-Liquid via Synthesis of Methanol, DME or FischerTropsch-Fuels: A Review Type Journal Article
Year (down) 2020 Publication Energy & Environmental Science Abbreviated Journal
Volume 13 Issue 10 Pages 3207-3252
Keywords
Abstract The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases, the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However, PtL poses new challenges for the synthesis: away from syngas-based, continuously run, large-scale plants towards more flexible, small-scale concepts with direct CO2-utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol, DME and Fischer Tropsch-fuels. It should serve as a benchmark for future concepts, guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels, several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO2 hydrogenation offers advantages through less by-product formation and lower heat development. However, increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency, operational experience from laboratory tests and pilot plants is still missing. Furthermore, four major process routes for power-to-DME are possible, requiring additional research to determine the optimal concept. In the case of Fischer Tropsch synthesis, catalysts for direct CO2 utilisation are still in an early stage. Consequently, todays Fischer Tropsch-based PtL requires a shift to syngas, benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Address
Corporate Author Thesis
Publisher The Royal Society of Chemistry Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5706 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ dieterichPowertoliquidSynthesisMethanol2020a Serial 17614
Permanent link to this record