|
Records |
Links  |
|
Author |
Lakaniemi, A.-M.; Hulatt, C.J.; Thomas, D.N.; Tuovinen, O.H.; Puhakka, J.A. |

|
|
Title |
Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Biotechnology for Biofuels |
Abbreviated Journal |
Biotechnol Biofuels |
|
|
Volume |
4 |
Issue |
1 |
Pages |
34 |
|
|
Keywords |
|
|
|
Abstract |
BACKGROUND: Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. RESULTS: Anaerobic serum bottle assays were conducted at 37 degrees C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. CONCLUSIONS: H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production. |
|
|
Address |
Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland. aino-maija.lakaniemi@tut.fi |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1754-6834 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:21943287; PMCID:PMC3193024 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12985 |
|
Permanent link to this record |
|
|
|
|
Author |
Hulatt, C.J.; Thomas, D.N. |

|
|
Title |
Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Bioresource Technology |
Abbreviated Journal |
Bioresour Technol |
|
|
Volume |
102 |
Issue |
12 |
Pages |
6687-6695 |
|
|
Keywords |
Biomass; *Bioreactors; Climate; Geography; Microalgae/growth & development/*metabolism; Oxygen/metabolism; Scenedesmus/growth & development/*metabolism; Seasons; Solar Energy |
|
|
Abstract |
This work examined the energetic performance of a 6-month semi-continuous cultivation of Scenedesmus obliquus in an outdoor photobioreactor at mid-temperate latitude, without temperature control. By measuring the seasonal biomass production (mean 11.31, range 1.39-23.67 g m(-2)d(-1)), higher heating value (22.94 kJ g(-1)) and solar irradiance, the mean seasonally-averaged photosynthetic efficiency (2.18%) and gross energy productivity (0.27 MJ m(-2) d(-1)) was calculated. When comparing the solar energy conversion efficiency to the energy investment for culture circulation, significant improvements in reactor energy input must be made to make the system viable. Using the data collected to model the energetic performance of a substitute photobioreactor design, we conclude that sustainable photobioreactor cultivation of microalgae in similar temperate climates requires a short light path and low power input, only reasonably obtained by flat-panel systems. However, temperature control was not necessary for effective long-term cultivation. |
|
|
Address |
School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey LL59 5AB, UK. osp418@bangor.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0960-8524 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:21511466 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12984 |
|
Permanent link to this record |
|
|
|
|
Author |
Hulatt, C.J.; Thomas, D.N. |

|
|
Title |
Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Bioresource Technology |
Abbreviated Journal |
Bioresour Technol |
|
|
Volume |
102 |
Issue |
10 |
Pages |
5775-5787 |
|
|
Keywords |
*Bioreactors; Carbon Dioxide/*metabolism; Energy Metabolism; Equipment Design; Microalgae/growth & development/*metabolism; Photochemistry |
|
|
Abstract |
This work examined the energy return of Chlorella vulgaris and Dunaliella tertiolecta cultivated in a gas-sparged photobioreactor design where the power input for sparging was manipulated (10, 20, and 50 Wm(-3)). Dry weight, organic carbon and heating values of the biomass were measured, plus a suite of variables including Fv/Fm and dissolved oxygen. A model for predicting the higher heating value of microalgal biomass was developed and used to measure the energetic performance of batch cultivations. High power inputs enhanced maximum biomass yields, but did not improve the energy return. Cultivation in 10 Wm(-3) showed up to a 39% higher cumulative net energy return than 50 Wm(-3), and increased the cumulative net energy ratio up to fourfold. The highest net energy ratio for power input was 19.3 (D. tertiolecta, 12% CO(2), 10 Wm(-3)). These systems may be a sustainable method of biomass production, but their effectiveness is sensitive to operational parameters. |
|
|
Address |
School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, Isle of Anglesey LL59 5AB, UK. osp418@bangor.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0960-8524 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:21376576 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12983 |
|
Permanent link to this record |
|
|
|
|
Author |
Carver, S.M.; Hulatt, C.J.; Thomas, D.N.; Tuovinen, O.H. |

|
|
Title |
Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Biodegradation |
Abbreviated Journal |
Biodegradation |
|
|
Volume |
22 |
Issue |
4 |
Pages |
805-814 |
|
|
Keywords |
Anaerobiosis; Biodegradation, Environmental; Biofuels; Biomass; Bioreactors; Cellulose/*metabolism; Chlorella vulgaris/*metabolism/microbiology; Chromatography, High Pressure Liquid; Fatty Acids, Volatile/biosynthesis; *Fermentation; *Hydrogen/metabolism; Microalgae/*metabolism/microbiology; Microbial Consortia |
|
|
Abstract |
Microalgal biomass has been a focus in the sustainable energy field, especially biodiesel production. The purpose of this study was to assess the feasibility of treating microalgal biomass and cellulose by anaerobic digestion for H2 production. A microbial consortium, TC60, known to degrade cellulose and other plant polymers, was enriched on a mixture of cellulose and green microalgal biomass of Dunaliella tertiolecta, a marine species, or Chlorella vulgaris, a freshwater species. After five enrichment steps at 60 degrees C, hydrogen yields increased at least 10% under all conditions. Anaerobic digestion of D. tertiolecta and cellulose by TC60 produced 7.7 mmol H2/g volatile solids (VS) which were higher than the levels (2.9-4.2 mmol/g VS) obtained with cellulose and C. vulgaris biomass. Both microalgal slurries contained satellite prokaryotes. The C. vulgaris slurry, without TC60 inoculation, generated H2 levels on par with that of TC60 on cellulose alone. The biomass-fed anaerobic digestion resulted in large shifts in short chain fatty acid concentrations and increased ammonium levels. Growth and H2 production increased when TC60 was grown on a combination of D. tertiolecta and cellulose due to nutrients released from algal cells via lysis. The results indicated that satellite heterotrophs from C. vulgaris produced H2 but the Chlorella biomass was not substantially degraded by TC60. To date, this is the first study to examine H2 production by anaerobic digestion of microalgal biomass. The results indicate that H2 production is feasible but higher yields could be achieved by optimization of the bioprocess conditions including biomass pretreatment. |
|
|
Address |
Department of Microbiology, Ohio State University, 484 W. 12th Ave., Columbus, OH 43210, USA. carver.84@gmail.com |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0923-9820 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:20878208 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12982 |
|
Permanent link to this record |
|
|
|
|
Author |
Hulatt, C.J.; Thomas, D.N. |

|
|
Title |
Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Bioresource Technology |
Abbreviated Journal |
Bioresour Technol |
|
|
Volume |
101 |
Issue |
22 |
Pages |
8690-8697 |
|
|
Keywords |
Bioreactors/*microbiology; Chlorella vulgaris/*physiology; Culture Media/chemistry; *Electric Power Supplies; Energy Transfer; Organic Chemicals/*chemistry/*metabolism; Photochemistry/*instrumentation; Solubility |
|
|
Abstract |
Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed. |
|
|
Address |
School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, UK. osp418@bangor.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0960-8524 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:20634058 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12981 |
|
Permanent link to this record |