toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Schnack-Schiel, S.B.; Thomas, D.N.; Haas, C.; Dieckmann, G.S.; Alheit, R. url  openurl
  Title The occurrence of the copepods Stephos longipes (Calanoida) and Drescheriella glacialis (Harpacticoida) in summer sea ice in the Weddell Sea, Antarctica Type (up) Journal Article
  Year 2001 Publication Antarctic Science Abbreviated Journal Antarctic Sci  
  Volume 13 Issue 2 Pages 150-157  
  Keywords copepods; Drescheriella glacialis; sea ice; seasonality; Stephos longipes  
  Abstract In January to March 1997, a RV Polarstern cruise that transected the Weddell Sea resulted in samples being taken in thick pack ice in the south-eastern Weddell Sea and then along the marginal ice edge towards the Antarctic Peninsula. Several ice types were thus sampled over a wide geographic area during late summer/early autumn. Common features of the first warm period was the occurrence of surface ponds, and that many floes had quasi-continuous horizontal gaps, underlying a layer of ice and metamorphic snow. With the onset of cold air temperatures in late February the gaps rapidly refroze. The calanoid copepod Stephos longipes occurred in all habitats encountered and showed highest numbers in the surface ice in summer, in the gap water during both seasons and in the refrozen gap water in autumn. Nauplii outnumbered copepodids in the surface ice and refrozen gap water, while in the gap water copepodids, mainly stages CI-CIII in summer and CII-CIV in autumn, comprised about 70% of the total population. The harpacticoid species Drescheriella glacialis did not occur in all habitats and was missing in surface ponds and new ice. Nauplii of D. glacialis were rarely found in gapwater, but predominated in the refrozen gaps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-1020 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Schnack-Schiel++2001_2 Serial 753  
Permanent link to this record
 

 
Author Thomas, D.N. url  doi
openurl 
  Title Photosynthetic microbes in freezing deserts Type (up) Journal Article
  Year 2005 Publication Trends in Microbiology Abbreviated Journal Trends Microbiol  
  Volume 13 Issue 3 Pages 87-88  
  Keywords  
  Abstract Polar deserts are not devoid of life despite the extreme low temperature and scarcity of water. Recently, patterned stone fields – caused by periglacial activity – have been surveyed in the Arctic and Antarctic. It was found that the productivity of the cyanobacteria and algae (hypoliths) that colonise the underside of the stones is strongly related to the pattern of the stones. The hypolith assemblages were in some cases as productive as lichens, bryophytes and plants that resided nearby.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science B.V. Place of Publication Amsterdam Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-842X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Thomas2005 Serial 755  
Permanent link to this record
 

 
Author Thomas, D.N.; Baumann, M.E.M.; Gleitz, M. url  openurl
  Title Efficiency of carbon assimilation and photoacclimation in a small unicellular Chaetoceros species from the Weddell Sea (Antarctica): Influence of temperature and irradiance Type (up) Journal Article
  Year 1992 Publication Journal of Experimental Marine Biology and Ecology Abbreviated Journal J Exp Mar Biol Ecol  
  Volume 157 Issue 2 Pages 195-209  
  Keywords photosynthesis; Psw; Weddell Sea; Chaetoceros; temperature effects; irradiance; light effects; acclimation; respiration; carbon fixation; low temperature; polar waters; Antarctica; water temperature  
  Abstract It is well established that Antarctic phytoplankton and sea-ice algae are able to thrive at low temperatures and it has been proposed that a reduction in respiration may be important in enabling them to do this. This possibility was studied in an Antarctic clone of a small unicellular Chaetoceros species isolated from the Weddell Sea (Antarctica), using comparative measurements of C assimilation during long- and short-term incubation series over a range of temperatures (-1.5 to 4 °C) at two irradiances (5 and 55 µmol m?²/s). Even though doubling times varied considerably, the total amount of C assimilated per cell per generation time was similar at each of the temperature and light conditions. However, over one cell cycle, significant respiratory C losses were determined by divergences in C assimilation patterns between cumulative and long-term incubations at both light intensities at 0 and 4 °C. At -1.5 °C, insignificant C losses were recorded. No significant extracellular release of dissolved organic material (DOC) was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science B.V. Place of Publication Amsterdam Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0981 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Thomas++1992 Serial 757  
Permanent link to this record
 

 
Author Thomas, D.N.; Dieckmann, G.S. openurl 
  Title Biogeochemistry of Antarctic sea ice Type (up) Journal Article
  Year 2002 Publication Oceanography and Marine Biology: An Annual Review Abbreviated Journal Oceanogr Mar Biol Annu Rev  
  Volume 40 Issue Pages 143-169  
  Keywords Sea ice; Biogeochemistry; Nutrients (mineral); Dissolved gases; Dissolved organic matter; Ps; Antarctic Ocean  
  Abstract Antarctic sea ice at its maximum extent in winter covers 40% of the Southern Ocean in a frozen layer, on average, 1 m thick. Sea ice is not solid, rather it is an ice crystal matrix permeated by a labyrinth of brine filled channels and pores in which life thrives. Organisms are constrained by a set of physicochemical factors quite unlike anything they encounter in the plankton from where they are recruited. Because sea ice is increasingly viewed as a suitable proxy for life in previous periods of the Earth's history, and even for astrobiology, it is pertinent that the physicochemical constraints acting upon sea-ice biology are better understood. The, largely microbial, network that develops in the ice itself imparts a unique chemistry that influences the nature and chemical composition of biogenic material released from the ice. This chemistry can result in the export of material to the sediments with distinctive chemical signatures that are useful tools for reconstructing past sea-ice cover of the oceans. This review synthesises information on inorganic nutrient, dissolved organic matter and dissolved gases from a variety of Antarctic ice habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication London Editor Gibson, R.N.; Barnes, M.; Atkinson, R.J.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0415254620 ISBN Medium  
  Area Expedition Conference  
  Notes Review; Marine Approved no  
  Call Number refbase @ admin @ Thomas+Dieckmann2002 Serial 758  
Permanent link to this record
 

 
Author Thomas, D.N.; Dieckmann, G.S. url  openurl
  Title Antarctic sea ice – a habitat for extremophiles Type (up) Journal Article
  Year 2002 Publication Science Abbreviated Journal Science  
  Volume 295 Issue 5555 Pages 641-644  
  Keywords Microorganisms; Sea ice; Ecosystems; Polar zones; Antarctic zone; Epontic organisms; Sea ice ecology; Antarctic sea ice; Marine microorganisms; Marine ecosystems; Bacteria; Algae; Psychrophilic bacteria; extremophiles; Ps; Antarctica  
  Abstract The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice- covered extraterrestrial bodies.  
  Address  
  Corporate Author Thesis  
  Publisher American Association for the Advancement of Science Place of Publication Washington, DC Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes Review Approved no  
  Call Number refbase @ admin @ Thomas+Dieckmann2002_2 Serial 759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: