toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Thomas, D.N. url  isbn
openurl 
  Title Frozen Oceans – The floating world of pack ice Type Book Whole
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pack ice is a layer of frozen seawater on the top of the polar oceans, varying in thickness from a few centimetres to tens of metres. It is an ephemeral feature, not just of polar regions but also of seas such as the Baltic, Caspian and Sea of Okhotsk. At its maximum extent it covers 13% of the Earth's surface area, making it one of the major biomes on the planet.For many years seen as an obstacle to trade and a threat to human life, the ice itself is now perceived to be vulnerable as we come to realize the dangers posed by global warming. Sea ice not only dominates polar regions but is also central to global ocean circulation as well as global climate patterns. Every year the formation, consolidation and subsequent melt of millions of square kilometres of ice influence the whole of the ocean's ecosystems.This is the first book to offer the general reader access to a remote frozen habitat which has for so long fascinated explorers, writers and scientists. During the harsh polar winter the surface of the ocean freezes up, forming a temporary ice layer called pack ice, or sea ice. This gives rise to a spectacular floating world which for a number of months each year becomes home to a wealth of plant and animal life. The wonderful colour photographs of life on, in and under the ice help draw the reader into this superb account of an extreme environment. Guaranteed to capture the imagination.The author is a veteran of six expeditions to the Arctic and Antarctic, and this book is packed with photographs taken in the course of his journeys. His lively and readable text conveys his excitement at the dangers and possibilities of life on the ice. He provides an in-depth background to the whole ecosystem of sea ice, its living communities and the structure of the ice itself. The level of accurate scientific detail will satisfy anyone looking for a reliable, up-to-date overview of this topic.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Natural History Museum Place of Publication London Editor Coyne, C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-565-09188-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Thomas2004 Serial 756  
Permanent link to this record
 

 
Author Schnack-Schiel, S.B.; Dieckmann, G.S.; Gradinger, R.; Melnikov, I.A.; Spindler, M.; Thomas, D.N. url  openurl
  Title Meiofauna in sea ice of the Weddell Sea (Antarctica) Type Journal Article
  Year 2001 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 24 Issue 10 Pages 724-728  
  Keywords Sea ice biota; Foraminifera; Antarctic sea ice; Sea ice; Meiofauna; Community composition; Meiobenthos; Antarctic zone; Juveniles; Psw; Weddell Sea; Antarctica  
  Abstract Sea-ice meiofauna was studied during various cruises to the Weddell Sea. Foraminifers dominate (75%) the sea-ice community in terms of numerical abundance while turbellarians dominate (45%) in terms of biomass. Distribution of organisms is patchy and varies considerably between cruises but also between sampling sites within one cruise. The bulk of the meiofauna is concentrated in the lowest parts of the sea ice, especially during winter and autumn. However, in porous summer sea ice, sympagic organisms also occur in high densities in upper and intermediate layers of sea ice. Proto- and metazoans associated with Antarctic sea ice include organisms actually living in sea ice, as well as those on the underside of floes and in the underlying water. The sea-ice habitat serves as a feeding ground, as well as an important nursery for juveniles, providing energy-rich food resources. The ice also constitutes a shelter from predators.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Schnack-Schiel++2001 Serial 751  
Permanent link to this record
 

 
Author Krell, A.; Ummenhofer, C.; Kattner, G.; Naumov, A.; Evans, D.; Dieckmann, G.S.; Thomas, D.N. url  openurl
  Title The biology and chemistry of land fast ice in the White Sea, Russia – A comparison of winter and spring conditions Type Journal Article
  Year 2003 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 26 Issue 11 Pages 707-719  
  Keywords  
  Abstract Various abiotic and biotic parameters, including phytoplankton distribution, were studied to investigate seasonal changes within the fast-ice cover in Chupa Inlet, a freshwater-influenced Arctic-like fjord in Kandalaksha Bay (White Sea). Sea ice and under-ice water were collected along transects in the inlet in February and April 2002. Ice-texture analysis, salinity and δ18O values indicated that the complete ice sheet had transformed within 2 months. This resulted from an upward growth of snow ice and subsequent melting at the underside of the ice, which makes a comparison between the two sampling periods difficult in terms of defining temporal developments within the ice. Nutrients, DOC and DON concentrations in the under-ice water were typical for Russian Arctic rivers. Concentrations of nitrate, silicate and DOC in the ice were lower, which is attributed to a loss as the ice forms. The concentrations were also modified by biological activity. In February, there was a strong correspondence between the distribution of biological parameters, including particulate and dissolved organic carbon and nitrogen (POC and PON, DOC and DON) and inorganic nutrients (nitrate, nitrite, phosphate and silicate), which was not the case in April. The correlation between both DOC and DON with ammonium indicates heterotrophic activity within the winter ice collected in February. Sea-ice organisms were distributed throughout the ice, and several assemblages were found in surface layers of the ice. In April, a more typical distribution of biomass in the ice was measured, with low values in the upper part and high algal concentrations in the lower sections of the ice, characteristic of a spring ice-algal bloom. In contrast to the February sampling, there was evidence that the ice-algal assemblage in April was nitrogen-limited, with total inorganic nitrogen concentrations being <1 µ mand a mean inorganic nitrogen to phosphorus ratio of 2.8. The ice assemblages were dominated by diatoms (in particular, Nitzschia spp.). There were temporal shifts in the assemblage composition: in February, diatoms accounted for 40% and in April for >98% of all organisms counted.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Krell++2003 Serial 290  
Permanent link to this record
 

 
Author Granskog, M.A.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Ehn, J.; Sonninen, E. url  doi
openurl 
  Title Scales of horizontal patchiness in chlorophyll a, chemical and physical properties of landfast sea ice in the Gulf of Finland (Baltic Sea) Type Journal Article
  Year 2005 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 28 Issue 4 Pages 276-283  
  Keywords  
  Abstract Horizontal variation of first-year landfast sea ice properties was studied in the Gulf of Finland, the Baltic Sea. Several scales of variation were considered; a number of arrays with core spacings of 0.2, 2 and 20 m were sampled at different stages of the ice season for small-scale patchiness. Spacing between these arrays was from hundreds of meters to kilometers to study mesoscale variability, and once an onshore–offshore 40-km transect was sampled to study regional scale variability. Measured variables included salinity, stable oxygen isotopes (δ18O), chlorophyll a (chl-a), nutrients and dissolved organic carbon. On a large scale, a combination of variations in the under-ice water salinity (ice porosity), nutrient supply and the stage of ice development control the build-up of ice algal biomass. At scales of hundreds of meters to kilometers, there was significant variability in several parameters (salinity, chl-a, snow depth and ice thickness). Analyses of the data from the arrays did not show evidence of significant patchiness at scales <20 m for algal biomass. The results imply that the sampling effort in Baltic Sea ice studies should be concentrated on scales of hundreds of meters to kilometers. Using the variations observed in the study area, the estimate for depth-integrated algal biomass in landfast sea ice in the Gulf of Finland (March 2003) is 5.5±4.4 mg chl-a m-2.  
  Address Granskog: Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland  
  Corporate Author Thesis  
  Publisher (up) Springer-Verlag Place of Publication Heidelberg Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Baltic Sea; Gulf of Finland Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Granskog++2005 Serial 739  
Permanent link to this record
 

 
Author Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Granskog, M.A.; Kivi, K. url  openurl
  Title Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea Type Journal Article
  Year 2006 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 30 Issue 2 Pages 183-197  
  Keywords  
  Abstract A study was undertaken to examine the activity and composition of the seasonal Baltic Sea land-fast sea-ice biota along a salinity gradient in March 2003 in a coastal location in the SW coast of Finland. Using a multi-variable data set, the less well-known algal and protozoan communities, and algal and bacterial production in relation to the physical and chemical environment were investigated. Also, the first coincident measurements of bacterial production and dissolved organic matter (DOM) in a sea-ice system are reported. Communities in sea ice were clearly autotrophy-dominated with algal biomass representing 79% of the total biomass. Protozoa and rotifers made up 18% of biomass in the ice and bacteria only 3%. Highest biomasses were found in mid-transect bottom ice. Water column assemblages were clearly more heterotrophic: 39% algae, 12% bacteria and 49% for rotifers and protozoa. Few significant correlations existed between DOM and bacterial variables, reflecting the complex origin of ice DOM. Dynamics of dissolved organic carbon, nitrogen and phosphorus (DOC, DON and DOP) were also uncoupled. A functional microbial loop is likely to be present in the studied ice. Existence of an under-ice freshwater plume affects the ecosystem functioning: Under-ice water communities are influenced directly by river-water mixing, whereas the ice system seems to be more independent–the interaction mainly taking place through the formation of active bottom communities.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes Sampling: Nine stations along a 40km salinity gradient from inner Pojo Bay through the Archipelago to the edge of the open sea Approved no  
  Call Number refbase @ admin @ Kaartokallio++2006 Serial 744  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: