|
Records |
Links |
|
Author |
Underwood, G.J.C.; Aslam, S.N.; Michel, C.; Niemi, A.; Norman, L.; Meiners, K.M.; Laybourn-Parry, J.; Paterson, H.; Thomas, D.N. |

|
|
Title |
Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice |
Type |
Journal Article |
|
Year |
2013 |
Publication  |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
Proc Natl Acad Sci U S A |
|
|
Volume |
110 |
Issue |
39 |
Pages |
15734-15739 |
|
|
Keywords |
Antarctic Regions; Arctic Regions; Biopolymers/*analysis; Carbohydrates/*analysis; Ice Cover/*chemistry; Models, Chemical; Molecular Weight; Solubility; algae; biogeochemistry; global relationships; microbial |
|
|
Abstract |
Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. |
|
|
Address |
School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
National Academy of Sciences |
Place of Publication |
Washington, DC |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0027-8424 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:24019487; PMCID:PMC3785782 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
17491 |
|
Permanent link to this record |
|
|
|
|
Author |
Thomas, D.N.; Dieckmann, G.S. |

|
|
Title |
Antarctic sea ice – a habitat for extremophiles |
Type |
Journal Article |
|
Year |
2002 |
Publication  |
Science |
Abbreviated Journal |
Science |
|
|
Volume |
295 |
Issue |
5555 |
Pages |
641-644 |
|
|
Keywords |
Microorganisms; Sea ice; Ecosystems; Polar zones; Antarctic zone; Epontic organisms; Sea ice ecology; Antarctic sea ice; Marine microorganisms; Marine ecosystems; Bacteria; Algae; Psychrophilic bacteria; extremophiles; Ps; Antarctica |
|
|
Abstract |
The pack ice of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an ice matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-ice organisms thrive in the ice, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea ice have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on ice- covered extraterrestrial bodies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Association for the Advancement of Science |
Place of Publication |
Washington, DC |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0036-8075 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
Review |
Approved |
no |
|
|
Call Number |
refbase @ admin @ Thomas+Dieckmann2002_2 |
Serial |
759 |
|
Permanent link to this record |
|
|
|
|
Author |
Thomas, D.N.; Papadimitriou, S. |

|
|
Title |
Biogeochemistry of sea ice |
Type |
Book Chapter |
|
Year |
2003 |
Publication  |
Sea ice – an introduction to its physics, chemistry, biology and geology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
267-302 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Blackwell Science Ltd |
Place of Publication |
Oxford |
Editor |
Thomas, D.N.; Dieckmann, G.S. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-632-05808-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
refbase @ admin @ Thomas+Papadimitriou2003 |
Serial |
766 |
|
Permanent link to this record |
|
|
|
|
Author |
Thomas, D.N.; Mock, T. |

|
|
Title |
Life in frozen veins – coping with the cold |
Type |
Journal Article |
|
Year |
2005 |
Publication  |
The Biochemist |
Abbreviated Journal |
Biochemist |
|
|
Volume |
27 |
Issue |
1 |
Pages |
12-16 |
|
|
Keywords |
adaptation; Antarctic; Arctic; low temperature; micro-organism; sea ice |
|
|
Abstract |
Every autumn a fundamental transition occurs in the surface waters of Polar Oceans. The surface waters of millions of square kilometres freeze to form an ice layer that varies from a few centimetres through to several metres thick, and which effectively separates the ocean from the atmosphere above. Ice made from seawater is a porous, semi-solid matrix permeated by a labyrinth of brine channels and pores, and within these a diverse microbial assemblage, including viruses, archaea, bacteria, flagellates and unicellular algae can thrive. These assemblages can reach such high abundances that the ice becomes a rich coffee colour. The microbial assemblages are in turn a rich food source for grazing proto- and zooplankton, especially in winter when food in the water column is scarce. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Biochemical Society |
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
refbase @ admin @ Thomas+Mock2005 |
Serial |
765 |
|
Permanent link to this record |
|
|
|
|
Author |
Raike, A.; Kortelainen, P.; Mattsson, T.; Thomas, D.N. |

|
|
Title |
36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea |
Type |
Journal Article |
|
Year |
2012 |
Publication  |
The Science of the Total Environment |
Abbreviated Journal |
Sci Total Environ |
|
|
Volume |
435-436 |
Issue |
|
Pages |
188-201 |
|
|
Keywords |
Baltic States; Carbon/*chemistry; Finland; Hydrology; Oceans and Seas; Rivers/*chemistry; Seasons; Soil/chemistry |
|
|
Abstract |
Increasing dissolved organic carbon (DOC) concentrations in lakes, rivers and streams in northern mid latitudes have been widely reported during the last two decades, but relatively few studies have dealt with trends in DOC export. We studied the export of DOC from Finnish rivers to the Baltic Sea between 1975 and 2010, and estimated trends in DOC fluxes (both flow normalised and non-normalised). The study encompassed the whole Finnish Baltic Sea catchment area (301,000 km(2)) covering major land use patterns in the boreal zone. Finnish rivers exported annually over 900,000 t DOC to the Baltic Sea, and the mean area specific export was 3.5 t km(-2). The highest export (7.3t km(-2)) was measured in peat dominated catchments, whereas catchments rich in lakes had the lowest export (2.2 t km(-2)). Inter-annual variation in DOC export was high and controlled mainly by hydrology. There was no overall trend in the annual water flow, although winter flow increased in northern Finland over 36 years. Despite the numerous studies showing increases in DOC concentrations in streams and rivers in the northern hemisphere, we could not find any evidence of increases in DOC export to the northern Baltic Sea from Finnish catchments since 1975. |
|
|
Address |
Finnish Environment Institute (SYKE), P.O. Box 140, FI-00251, Helsinki, Finland. antti.raike@ymparisto.fi |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0048-9697 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:22854090 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12986 |
|
Permanent link to this record |