toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Kennedy, H.; Thomas, D.N.; Kattner, G.; Haas, C.; Dieckmann, G.S. url  openurl
  Title Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition Type Journal Article
  Year 2002 Publication (up) Marine Ecology Progress Series Abbreviated Journal Mar Ecol Prog Ser  
  Volume 238 Issue Pages 1-13  
  Keywords Pom; Anarctic sea ice; ice microalgae; carbon isotopic composition  
  Abstract The chemical and isotopic data from sea ice collected over a wide area of the Weddell Sea, Antarctica, during the austral summer/early autumn illustrate the range of environmental conditions under which ice algae grow. A range of ice types and features were sampled including intact and layered ice floes and surface ponds. Sea ice communities were found in all these environments but the highest biomasses were found either at the base of ice floes, or in the interior of layered floes with quasi-continuous horizontal gaps at or shortly below the water level. In the layered floes, particulate organic carbon (POC) measured in the ice layer immediately overlying the gap water (280 to 6014 µmol dm?³) was in excess of what would be predicted if algal growth had occurred in a closed environment. The chemical composition of the gap water was strongly affected by biological activity in the overlying ice, which acts as a physical support for the algae retained within its matrix. The lowest range of POC (27 to 739 µmol dm?³) conformed to predictions of algal growth in a closed system and samples were collected from the interior of ice floes where there was essentially no potential for nutrient exchange. The surface ponds displayed nitrate (NO³?) exhaustion and total dissolved inorganic carbon (?CO?) reductions consistent with nutrient limited algal growth. The stable carbon isotopic composition of the particulate organic matter (POM) across all habitat types sampled (?¹³CPOC -10.0 to -27.3?) displayed a wide range but was much less variable than the range of POC concentrations might have implied. The assumption that the highest biomass of algae in sea ice will result in the most positive ?¹³CPOC values cannot be generally applied. The isotopic composition of dissolved inorganic carbon (?¹³C?CO?) in gap waters and surface ponds varied from 0.15 to 3.0? and was shown to be commensurate with the changes predicted from NO³? deficits caused by algal growth.  
  Address  
  Corporate Author Thesis  
  Publisher Inter-Research Place of Publication Oldendorf/Luhe Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Kennedy++2002 Serial 746  
Permanent link to this record
 

 
Author Thomas, D.N.; Dieckmann, G.S. openurl 
  Title Biogeochemistry of Antarctic sea ice Type Journal Article
  Year 2002 Publication (up) Oceanography and Marine Biology: An Annual Review Abbreviated Journal Oceanogr Mar Biol Annu Rev  
  Volume 40 Issue Pages 143-169  
  Keywords Sea ice; Biogeochemistry; Nutrients (mineral); Dissolved gases; Dissolved organic matter; Ps; Antarctic Ocean  
  Abstract Antarctic sea ice at its maximum extent in winter covers 40% of the Southern Ocean in a frozen layer, on average, 1 m thick. Sea ice is not solid, rather it is an ice crystal matrix permeated by a labyrinth of brine filled channels and pores in which life thrives. Organisms are constrained by a set of physicochemical factors quite unlike anything they encounter in the plankton from where they are recruited. Because sea ice is increasingly viewed as a suitable proxy for life in previous periods of the Earth's history, and even for astrobiology, it is pertinent that the physicochemical constraints acting upon sea-ice biology are better understood. The, largely microbial, network that develops in the ice itself imparts a unique chemistry that influences the nature and chemical composition of biogenic material released from the ice. This chemistry can result in the export of material to the sediments with distinctive chemical signatures that are useful tools for reconstructing past sea-ice cover of the oceans. This review synthesises information on inorganic nutrient, dissolved organic matter and dissolved gases from a variety of Antarctic ice habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication London Editor Gibson, R.N.; Barnes, M.; Atkinson, R.J.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0415254620 ISBN Medium  
  Area Expedition Conference  
  Notes Review; Marine Approved no  
  Call Number refbase @ admin @ Thomas+Dieckmann2002 Serial 758  
Permanent link to this record
 

 
Author Weykam, G.; Thomas, D.N.; Wiencke, C. openurl 
  Title Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness Type Journal Article
  Year 1997 Publication (up) Phycologia Abbreviated Journal Phycologia  
  Volume 36 Issue 5 Pages 395-405  
  Keywords Winter; Polar waters; Photosynthesis; Antarctic zone; Ice cover; Seaweeds; Light effects; Plant physiology; Growth; Palmariales; Gigartinales; Iridaea cordata; Palmaria decipiens; Ps; Antarctica  
  Abstract Physiological and developmental responses during and following long-term exposure to darkness were investigated in the Antarctic red algae Palmaria decipiens and Iridaea cordata. Thalli were kept in darkness for a period of 6 mo, simulating winter sea ice cover. Subsequently, they were grown illuminated under seasonally fluctuating Antarctic daylengths. During darkness, P. decipiens, an Antarctic endemic, rapidly lost its ability to photosynthesize although chlorophyll a content remained fairly constant. The amount of floridean starch decreased gradually in the dark, with a sudden drop simultaneous with the development of new blades. After reexposure to light there was a rapid increase in photosynthetic oxygen production, whereas the rate of carbon assimilation increased more slowly, resulting in high apparent photosynthetic quotients. The increase in growth rate showed a close relation to carbon assimilation, suggesting that carbon is utilized first for growth, then for floridean starch accumulation. In contrast to P. decipiens, the photosynthetic rate of the Antarctic cold-temperate I. cordata was still about half of the initial rate after a dark period of 6 mo, i.e. the alga maintained functionality of its photosynthetic apparatus during winter. After reexposure to light there was a continuous increase in specific growth rate due to increasing photosynthetic activity. Iridaea cordata also accumulated floridean starch during summer, although in smaller amounts than P. decipiens. Together with the ability to photosynthesize, starch accumulation facilitates survival during extended dark periods in winter. The early development of blade initials and the rapid increase in photosynthetic capability after illumination may permit P. decipiens to use the period of high water transparency optimally in Antarctic spring. Iridaea cordata seems better able to survive prolonged dark periods in areas with less predictable light conditions. Both physiological patterns are well suited to the highly seasonal light conditions in Antarctica.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8884 ISBN Medium  
  Area Expedition Conference  
  Notes Marine Approved no  
  Call Number refbase @ admin @ Weykam++1997 Serial 767  
Permanent link to this record
 

 
Author Krell, A.; Ummenhofer, C.; Kattner, G.; Naumov, A.; Evans, D.; Dieckmann, G.S.; Thomas, D.N. url  openurl
  Title The biology and chemistry of land fast ice in the White Sea, Russia – A comparison of winter and spring conditions Type Journal Article
  Year 2003 Publication (up) Polar Biology Abbreviated Journal Polar Biol  
  Volume 26 Issue 11 Pages 707-719  
  Keywords  
  Abstract Various abiotic and biotic parameters, including phytoplankton distribution, were studied to investigate seasonal changes within the fast-ice cover in Chupa Inlet, a freshwater-influenced Arctic-like fjord in Kandalaksha Bay (White Sea). Sea ice and under-ice water were collected along transects in the inlet in February and April 2002. Ice-texture analysis, salinity and δ18O values indicated that the complete ice sheet had transformed within 2 months. This resulted from an upward growth of snow ice and subsequent melting at the underside of the ice, which makes a comparison between the two sampling periods difficult in terms of defining temporal developments within the ice. Nutrients, DOC and DON concentrations in the under-ice water were typical for Russian Arctic rivers. Concentrations of nitrate, silicate and DOC in the ice were lower, which is attributed to a loss as the ice forms. The concentrations were also modified by biological activity. In February, there was a strong correspondence between the distribution of biological parameters, including particulate and dissolved organic carbon and nitrogen (POC and PON, DOC and DON) and inorganic nutrients (nitrate, nitrite, phosphate and silicate), which was not the case in April. The correlation between both DOC and DON with ammonium indicates heterotrophic activity within the winter ice collected in February. Sea-ice organisms were distributed throughout the ice, and several assemblages were found in surface layers of the ice. In April, a more typical distribution of biomass in the ice was measured, with low values in the upper part and high algal concentrations in the lower sections of the ice, characteristic of a spring ice-algal bloom. In contrast to the February sampling, there was evidence that the ice-algal assemblage in April was nitrogen-limited, with total inorganic nitrogen concentrations being <1 µ mand a mean inorganic nitrogen to phosphorus ratio of 2.8. The ice assemblages were dominated by diatoms (in particular, Nitzschia spp.). There were temporal shifts in the assemblage composition: in February, diatoms accounted for 40% and in April for >98% of all organisms counted.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Krell++2003 Serial 290  
Permanent link to this record
 

 
Author Granskog, M.A.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Ehn, J.; Sonninen, E. url  doi
openurl 
  Title Scales of horizontal patchiness in chlorophyll a, chemical and physical properties of landfast sea ice in the Gulf of Finland (Baltic Sea) Type Journal Article
  Year 2005 Publication (up) Polar Biology Abbreviated Journal Polar Biol  
  Volume 28 Issue 4 Pages 276-283  
  Keywords  
  Abstract Horizontal variation of first-year landfast sea ice properties was studied in the Gulf of Finland, the Baltic Sea. Several scales of variation were considered; a number of arrays with core spacings of 0.2, 2 and 20 m were sampled at different stages of the ice season for small-scale patchiness. Spacing between these arrays was from hundreds of meters to kilometers to study mesoscale variability, and once an onshore–offshore 40-km transect was sampled to study regional scale variability. Measured variables included salinity, stable oxygen isotopes (δ18O), chlorophyll a (chl-a), nutrients and dissolved organic carbon. On a large scale, a combination of variations in the under-ice water salinity (ice porosity), nutrient supply and the stage of ice development control the build-up of ice algal biomass. At scales of hundreds of meters to kilometers, there was significant variability in several parameters (salinity, chl-a, snow depth and ice thickness). Analyses of the data from the arrays did not show evidence of significant patchiness at scales <20 m for algal biomass. The results imply that the sampling effort in Baltic Sea ice studies should be concentrated on scales of hundreds of meters to kilometers. Using the variations observed in the study area, the estimate for depth-integrated algal biomass in landfast sea ice in the Gulf of Finland (March 2003) is 5.5±4.4 mg chl-a m-2.  
  Address Granskog: Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Heidelberg Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Baltic Sea; Gulf of Finland Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Granskog++2005 Serial 739  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: