toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Thomas, D.N.; Kattner, G.; Engbrodt, R.; Giannelli, V.; Kennedy, H.; Haas, C.; Dieckmann, G.S. url  openurl
  Title Dissolved organic matter in Antarctic sea ice Type Journal Article
  Year 2001 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 33 Issue 1 Pages 297-303  
  Keywords  
  Abstract It has been hypothesized that there are significant dissolved organic matter (DOM) pools in sea-ice systems, although measurements of DOM in sea ice have only rarely been made. The significance of DOM for ice-based productivity and carbon turnover therefore remains highly speculative. DOM within sea ice from the Amundsen and Bellingshausen Seas, Antarctica, in 1994 and the Weddell Sea, Antarctica, in 1992 and 1997 was investigated. Measurements were made on melted sea-ice sections in 1994 and 1997 and in sea-ice brines in 1992. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations in melted ice cores were up to 1.8 and 0.78 mM, respectively, or 30 and 8 times higher than those in surface water concentrations, respectively. However, when concentrations within the brine channel/pore space were calculated from estimated brine volumes, actual concentrations of DOC in brines were up to 23.3 mM and DON up to 2.2 mM, although mean values were 1.8 and 0.15 mM, respectively. There were higher concentrations of DOM in warm, porous summer second-year sea ice compared with colder autumn first-year ice, consistent with the different biological activity supported within the various ice types. However, in general there was poor correlation between DOC and DON with algal biomass and numbers of bacteria within the ice. The mean DOC/DON ratio was 11, although again values were highly variable, ranging from 3 to highly carbon-enriched samples of 95. Measurements made on a limited dataset showed that carbohydrates constitute on average 35% of the DOC pool, with highly variable contributions of 1–99%.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor Intl. Symp. on Sea Ice and its Interaction with the Ocean, A. and B., Fairbanks, Alaska(USA), 19-23 Jun 2000,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Conference Approved no  
  Call Number refbase @ admin @ Thomas++2001 Serial 761  
Permanent link to this record
 

 
Author Thomas, D.N.; Lara, R.J.; Eicken, H.; Kattner, G.; Skoog, A. url  openurl
  Title Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics Type Journal Article
  Year 1995 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 15 Issue 6 Pages 447-483  
  Keywords sea ice; Arctic; Dom  
  Abstract Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH?? and NO?? were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO?? was depleted, although not exhausted. High DOC and DON values in conjunction with high NH?? levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH?? and NO?? points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes (up) D Approved no  
  Call Number refbase @ admin @ Thomas++1995 Serial 763  
Permanent link to this record
 

 
Author Gomez, I.; Wiencke, C.; Thomas, D.N. url  openurl
  Title Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis in relation to thallus age and size Type Journal Article
  Year 1996 Publication European Journal of Phycology Abbreviated Journal Eur J Phycol  
  Volume 31 Issue 2 Pages 167-172  
  Keywords photosynthesis: thallus: carbon fixation; growth curves; algae; age; Thalli; marine flora; Ascoseira mirabilis; Antarctica  
  Abstract Growth, photosynthesis, dark respiration, chlorophyll a (Chl a) content and dry weight were measured in 2- and 3-year-old plants of Ascoseira mirabilis (Ascoseirales), cultivated in the laboratory under changing daylengths which matched the seasonal variations in the Antarctic. Determinations were made in four thallus regions. Growth of A. mirabilis was seasonal, with higher rates in spring. Parameters such as net photosynthesis (P sub(max)), photosynthetic efficiency ( alpha ), both measured on a fresh weight (FW) basis, and dry weight content, showed significant age- and size-dependent variations. In contrast, no variations were observed in dark respiration, initial light-saturating point of photosynthesis (I sub(k)) and Chl a contents. P sub(max) had maximum values close to 16.5 mu mol O sub(2)/g super(1) FW/h in 2-year-old plants, whereas in 3-year-old plants maximum values of 8 mu mol O sub(2)/g FW/h were determined. The alpha -values reached maximum rates of 1.4 and 0.6 mu mol O sub(2)/g FW/h/( mu mol photons/m super(2)/s) in 2- and 3-year-old plants, respectively. Light compensation point (I sub(c)), dry weight ratios and Chl a contents varied significantly along the length of the blade. Maximum dry:fresh weight ratios were observed in the basal region, with values close to 18%. Distal regions of the 3-year-old plants had significantly higher dry weight content than 2-year-old plants (17.5% and 13%, respectively). Chl a concentrations increased towards the middle regions of the thallus to values close to 0.35 mg Chl a/g FW. The results indicate that some morpho-functional processes in A. mirabilis, especially net photosynthesis and photosynthetic efficiency, are governed by age of the plant, thereby reflecting differences in biomass allocation and size. Our data also confirm the previously demonstrated relationship between growth and seasonal physiological activity that allows A. mirabilis to survive under the low light conditions prevailing in the Antarctic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0262 ISBN Medium  
  Area Expedition Conference  
  Notes (up) growth curves; size; Thalli; marine flora; thallus Approved no  
  Call Number refbase @ admin @ Gomez++1996 Serial 737  
Permanent link to this record
 

 
Author Haas, C.; Thomas, D.N.; Bareiss, J. url  openurl
  Title Surface properties and processes of perennial Antarctic sea ice in summer Type Journal Article
  Year 2001 Publication Journal of Glaciology Abbreviated Journal J Glaciol  
  Volume 47 Issue 159 Pages 613-625  
  Keywords  
  Abstract Ice-core and snow data from the Amundsen, Bellingshausen and Weddell Seas, Antarctica, show that the formation of superimposed ice and the development of seawater-filled gap layers with high algal standing stocks is typical of the perennial sea ice in summer. The coarse-grained and dense snow had salinities mostly below 0.1ppt. A layer of fresh superimposed ice had a mean thickness of 0.04-0.12 m. Gap layers 0.04-0.08 m thick extended downwards from 0.02 to 0.14 m below the water level. These gaps were populated by diatom standing stocks up to 439 ?g L?¹ chlorophyll a. We propose a comprehensive heuristic model of summer processes, where warming and the reversal of temperature gradients cause major transformations in snow and ice properties. The warming also causes the reopening of incompletely frozen slush layers caused by flood-freeze cycles during winter. Alternatively, superimposed ice forms at the cold interface between snow and slush in the case of flooding with negative freeboard. Combined, these explain the initial formation of gap layers by abiotic means alone. The upward growth of superimposed ice above the water level competes with a steady submergence of floes due to bottom and internal melting and accumulation of snow.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1430 ISBN Medium  
  Area Expedition Conference  
  Notes (up) IPØ/Tvärrminne Approved no  
  Call Number refbase @ admin @ Haas++2001 Serial 742  
Permanent link to this record
 

 
Author Granskog, M.A.; Virkkunen, K.; Thomas, D.N.; Ehn, J.; Kola, H.; Martma, T. url  openurl
  Title Chemical properties of brackish water ice in the Bothnian Bay, the Baltic Sea Type Journal Article
  Year 2004 Publication Journal of Glaciology Abbreviated Journal J Glaciol  
  Volume 50 Issue 169 Pages 292-302  
  Keywords Dependent Solute Redistribution; Dissolved Organic Matter; Phase Boundary; Sulfate; Binding; Summer; Oxygen; Core; Gulf  
  Abstract The behavior of majors, δ18O, dissolved organic carbon (DOC) and trace elements was studied during the initial freezing of low-saline water (3 practical salinity units) in a freezing experiment. Samples were also collected from first-year sea ice from pack ice in the Bothnian Bay, northern Baltic Sea. During initial ice formation, the major-ion ratios in sea ice indicated variable behavior, with some ions showing relative enrichment (sulfate, calcium and magnesium), conservative behavior (sodium) or relative depletion (potassium) compared to sea water at the same salinity DOC, iron and aluminum showed enrichment in the ice, while zinc was depleted to salinity. Lead was detected in surface snow-ice layers only, implying atmospheric accumulation. First-year sea ice, with a variable growth and thermal history, showed behavior for major ions similar to that observed in new ice. However, for trace elements the picture was much more complicated, most likely due to active secondary processes such as atmospheric supply and biological activity. Ice growth has a potential impact on the chemical budgets and cycling of some elements, especially those which are selectively rejected/retained during sea-ice formation, particularly in the shallow parts of the Bothnian Bay covered with a land-fast ice cover.  
  Address Granskog: Univ Helsinki, Dept Phys Sci, Div Geophys, FIN-00014 Helsinki, Finland  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1430 ISBN Medium  
  Area Baltic Sea; Bothnian Bay Expedition Conference  
  Notes (up) ISI:000227720900014 Approved no  
  Call Number refbase @ admin @ Granskog++2004 Serial 741  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: