|
Records |
Links |
|
Author |
Stedmon, C.A.; Thomas, D.N.; Granskog, M.; Kaartokallio, H.; Papadimitriou, S.; Kuosa, H. |

|
|
Title |
Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? |
Type |
Journal Article |
|
Year |
2007 |
Publication |
Environmental Science & Technology |
Abbreviated Journal |
Environ Sci Technol |
|
|
Volume |
41 |
Issue  |
21 |
Pages |
7273-7279 |
|
|
Keywords |
Carbon/analysis; *Humic Substances; Ice Cover/*chemistry; Nitrogen/analysis; Oceans and Seas; Spectrometry, Fluorescence |
|
|
Abstract |
The origin of dissolved organic matter (DOM) within sea ice in coastal waters of the Baltic Sea was investigated using parallel factor (PARAFAC) analysis of DOM fluorescence. Sea ice DOM had distinctly different fluorescence characteristics than that of the underlying humic-rich waters and was dominated by protein-like fluorescence signals. PARAFAC analysis identified five fluorescent components, all of which were present in both sea ice and water. Three humic components were negatively correlated to salinity and concluded to be terrestrially derived material. Baltic Sea ice DOM was found to be a mixture of humic material from the underlying water column incorporated during ice formation and autochthonous material produced by organisms within the ice. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were correlated to the humic fluorescence, indicating that the majority of the organic carbon and nitrogen in Baltic Sea ice is bound in terrestrial humic material trapped within the ice. This has implications for our understanding of sea ice carbon cycling in regions influenced by riverine input (e.g., Baltic and Arctic coastal waters), as the susceptibility of DOM to degradation and remineralization is largely determined by its source. |
|
|
Address |
Department of Marine Ecology, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, 4000 Roskilde, Denmark. cst@dmu.dk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0013-936X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:18044499 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12979 |
|
Permanent link to this record |
|
|
|
|
Author |
Hulatt, C.J.; Thomas, D.N. |

|
|
Title |
Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Bioresource Technology |
Abbreviated Journal |
Bioresour Technol |
|
|
Volume |
101 |
Issue  |
22 |
Pages |
8690-8697 |
|
|
Keywords |
Bioreactors/*microbiology; Chlorella vulgaris/*physiology; Culture Media/chemistry; *Electric Power Supplies; Energy Transfer; Organic Chemicals/*chemistry/*metabolism; Photochemistry/*instrumentation; Solubility |
|
|
Abstract |
Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed. |
|
|
Address |
School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, UK. osp418@bangor.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0960-8524 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:20634058 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
12981 |
|
Permanent link to this record |
|
|
|
|
Author |
Mock, T.; Dieckmann, G.S.; Haas, C.; Krell, A.; Tison, J.-L.; Belem, A.L.; Papadimitriou, S.; Thomas, D.N. |

|
|
Title |
Micro-optodes in sea ice: a new approach to investigate oxygen dynamics during sea ice formation |
Type |
Journal Article |
|
Year |
2002 |
Publication |
Aquatic Microbial Ecology |
Abbreviated Journal |
Aquat Microb Ecol |
|
|
Volume |
29 |
Issue  |
3 |
Pages |
297-306 |
|
|
Keywords |
Fragilariopsis cylindrus; Oxygen; Methods; Micro-optodes; Sea ice; Biogeochemistry; Diatoms; Algae; Chlorophyll; Photosynthesis; Salinity effects; Sea water; Marine ecosystems; Chlorophylls; Dissolved oxygen; Gases; Epontic environment; Electrodes; Sensors; Brines; Ice-water interface; Ice formation; Bacillariophyceae |
|
|
Abstract |
Oxygen micro-optodes were used to measure oxygen dynamics directly within the microstructure of sea ice by freezing the sensors into the ice during its formation. The experiment was conducted in a 4 m³ mesocosm filled with artificial seawater and inoculated with a unialgal culture of the common Antarctic ice diatom Fragilariopsis cylindrus (Bacillariophyceae) to a final chlorophyll a (chl a) concentration of 11 µg 1?¹. Ice growth was initiated 7 d after inoculation by reducing the air temperature to -10 plus or minus 2 degree C and terminated 17 d later. The final ice thickness was 27 cm. One optode was frozen into grease ice and 2 others into the skeletal layer of the growing ice sheet. Increasing oxygen concentrations during ice crystal formation at the water surface and the ice-water interface revealed a strong inclusion of oxygen, which was either physically trapped and/or the result of photosynthesising diatoms. The major portion of oxygen was present as gas bubbles due to super-saturation as a result of increasing salinity and oxygen production by diatoms. An increase in salinity due to a concurrent decrease in ice temperatures during subsequent sea ice development reduced the maximum concentration of dissolved oxygen within brine. Thus, dissolved oxygen concentrations decreased over time, whereas gaseous oxygen was released to the atmosphere and seawater. The sensors are a significant advance on more conventional microelectrodes, because the recordings can be temperature and salinity compensated in order to obtain precise measurements of oxygen dynamics with regard to total (dissolved and gaseous) and dissolved oxygen in sea ice. Optodes do not consume oxygen during measuremnet over a long period under extreme conditions, which is another advantage for long-term deployment in the field. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Inter-Research |
Place of Publication |
Oldendorf/Luhe |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0948-3055 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
Marine |
Approved |
no |
|
|
Call Number |
refbase @ admin @ Mock++2002 |
Serial |
749 |
|
Permanent link to this record |
|
|
|
|
Author |
Thomas, D.N. |

|
|
Title |
Photosynthetic microbes in freezing deserts |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Trends in Microbiology |
Abbreviated Journal |
Trends Microbiol |
|
|
Volume |
13 |
Issue  |
3 |
Pages |
87-88 |
|
|
Keywords |
|
|
|
Abstract |
Polar deserts are not devoid of life despite the extreme low temperature and scarcity of water. Recently, patterned stone fields – caused by periglacial activity – have been surveyed in the Arctic and Antarctic. It was found that the productivity of the cyanobacteria and algae (hypoliths) that colonise the underside of the stones is strongly related to the pattern of the stones. The hypolith assemblages were in some cases as productive as lichens, bryophytes and plants that resided nearby. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science B.V. |
Place of Publication |
Amsterdam |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0966-842X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
refbase @ admin @ Thomas2005 |
Serial |
755 |
|
Permanent link to this record |
|
|
|
|
Author |
Underwood, G.J.C.; Aslam, S.N.; Michel, C.; Niemi, A.; Norman, L.; Meiners, K.M.; Laybourn-Parry, J.; Paterson, H.; Thomas, D.N. |

|
|
Title |
Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
Proc Natl Acad Sci U S A |
|
|
Volume |
110 |
Issue  |
39 |
Pages |
15734-15739 |
|
|
Keywords |
Antarctic Regions; Arctic Regions; Biopolymers/*analysis; Carbohydrates/*analysis; Ice Cover/*chemistry; Models, Chemical; Molecular Weight; Solubility; algae; biogeochemistry; global relationships; microbial |
|
|
Abstract |
Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. |
|
|
Address |
School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
National Academy of Sciences |
Place of Publication |
Washington, DC |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0027-8424 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:24019487; PMCID:PMC3785782 |
Approved |
no |
|
|
Call Number |
refbase @ user @ |
Serial |
17491 |
|
Permanent link to this record |