toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Steffens, M.; Granskog, M.A.; Kaartokallio, H.; Kuosa, H.; Luodekari, K.; Papadimitriou, S.; Thomas, D.N. url  openurl
  Title Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea Type Conference Article
  Year 2006 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 44 Issue (up) 1 Pages 80-87  
  Keywords Sea ice; Fast ice; Sea ice properties; Ice algae; Chlorophyll; Biogeochemistry; Nutrients (mineral); Particulate organic matter; Dissolved organic matter; Salinity; Spatial scale; Spatial variability; Horizontal patchiness; Sampling design; Brackish water; Ane; Baltic Sea; Gulf of Bothnia  
  Abstract Horizontal variation of landfast sea-ice properties was studied in the Gulf of Bothnia, Baltic Sea, during March 2004. In order to estimate their variability among and within different spatial levels, 72 ice cores were sampled on five spatial scales (with spacings of 10 cm, 2.5 m, 25 m, 250 m and 2.5 km) using a hierarchical sampling design. Entire cores were melted, and bulk-ice salinity, concentrations of chlorophyll a (Chl a), phaeophytin (Phaeo), dissolved nitrate plus nitrite (DIN) as well as dissolved organic carbon (DOC) and nitrogen (DON) were determined. All sampling sites were covered by a 5.5-23 cm thick layer of snow. Ice thicknesses of cores varied from 26 to 58 cm, with bulk-ice salinities ranging between 0.2 and 0.7 as is typical for Baltic Sea ice. Observed values for Chl a (range: 0.8-6.0 μg Chl a l-1; median: 2.9 μg Chl a l -1) and DOC (range: 37-397 μM; median: 95 μM) were comparable to values reported by previous sea-ice studies from the Baltic Sea. Analysis of variance among different spatial levels revealed significant differences on the 2.5 km scale for ice thickness, DOC and Phaeo (with the latter two being positively correlated with ice thickness). For salinity and Chl a, the 250 m scale was found to be the largest scale where significant differences could be detected, while snow depth only varied significantly on the 25 m scale. Variability on the 2.5 m scale contributed significantly to the total variation for ice thickness, salinity, Chl a and DIN. In the case of DON, none of the investigated levels exhibited variation that was significantly different from the considerable amount of variation found between replicate cores. Results from a principal component analysis suggest that ice thickness is one of the main elements structuring the investigated ice habitat on a large scale, while snow depth, nutrients and salinity seem to be of secondary importance.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area Baltic Sea; Gulf of Bothnia Expedition Conference International Symposium on Sea Ice, Dunedin (New Zealand), 5-9 Dec 2005  
  Notes Approved no  
  Call Number refbase @ admin @ Steffens++2006 Serial 754  
Permanent link to this record
 

 
Author Thomas, D.N.; Kattner, G.; Engbrodt, R.; Giannelli, V.; Kennedy, H.; Haas, C.; Dieckmann, G.S. url  openurl
  Title Dissolved organic matter in Antarctic sea ice Type Journal Article
  Year 2001 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 33 Issue (up) 1 Pages 297-303  
  Keywords  
  Abstract It has been hypothesized that there are significant dissolved organic matter (DOM) pools in sea-ice systems, although measurements of DOM in sea ice have only rarely been made. The significance of DOM for ice-based productivity and carbon turnover therefore remains highly speculative. DOM within sea ice from the Amundsen and Bellingshausen Seas, Antarctica, in 1994 and the Weddell Sea, Antarctica, in 1992 and 1997 was investigated. Measurements were made on melted sea-ice sections in 1994 and 1997 and in sea-ice brines in 1992. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations in melted ice cores were up to 1.8 and 0.78 mM, respectively, or 30 and 8 times higher than those in surface water concentrations, respectively. However, when concentrations within the brine channel/pore space were calculated from estimated brine volumes, actual concentrations of DOC in brines were up to 23.3 mM and DON up to 2.2 mM, although mean values were 1.8 and 0.15 mM, respectively. There were higher concentrations of DOM in warm, porous summer second-year sea ice compared with colder autumn first-year ice, consistent with the different biological activity supported within the various ice types. However, in general there was poor correlation between DOC and DON with algal biomass and numbers of bacteria within the ice. The mean DOC/DON ratio was 11, although again values were highly variable, ranging from 3 to highly carbon-enriched samples of 95. Measurements made on a limited dataset showed that carbohydrates constitute on average 35% of the DOC pool, with highly variable contributions of 1–99%.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor Intl. Symp. on Sea Ice and its Interaction with the Ocean, A. and B., Fairbanks, Alaska(USA), 19-23 Jun 2000,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area Expedition Conference  
  Notes Conference Approved no  
  Call Number refbase @ admin @ Thomas++2001 Serial 761  
Permanent link to this record
 

 
Author Thomas, D.N.; Mock, T. url  openurl
  Title Life in frozen veins – coping with the cold Type Journal Article
  Year 2005 Publication The Biochemist Abbreviated Journal Biochemist  
  Volume 27 Issue (up) 1 Pages 12-16  
  Keywords adaptation; Antarctic; Arctic; low temperature; micro-organism; sea ice  
  Abstract Every autumn a fundamental transition occurs in the surface waters of Polar Oceans. The surface waters of millions of square kilometres freeze to form an ice layer that varies from a few centimetres through to several metres thick, and which effectively separates the ocean from the atmosphere above. Ice made from seawater is a porous, semi-solid matrix permeated by a labyrinth of brine channels and pores, and within these a diverse microbial assemblage, including viruses, archaea, bacteria, flagellates and unicellular algae can thrive. These assemblages can reach such high abundances that the ice becomes a rich coffee colour. The microbial assemblages are in turn a rich food source for grazing proto- and zooplankton, especially in winter when food in the water column is scarce.  
  Address  
  Corporate Author Thesis  
  Publisher Biochemical Society Place of Publication London Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Thomas+Mock2005 Serial 765  
Permanent link to this record
 

 
Author Lakaniemi, A.-M.; Hulatt, C.J.; Thomas, D.N.; Tuovinen, O.H.; Puhakka, J.A. url  doi
openurl 
  Title Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass Type Journal Article
  Year 2011 Publication Biotechnology for Biofuels Abbreviated Journal Biotechnol Biofuels  
  Volume 4 Issue (up) 1 Pages 34  
  Keywords  
  Abstract BACKGROUND: Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. RESULTS: Anaerobic serum bottle assays were conducted at 37 degrees C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. CONCLUSIONS: H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production.  
  Address Department of Chemistry and Bioengineering, Tampere University of Technology, PO Box 541, FI-33101 Tampere, Finland. aino-maija.lakaniemi@tut.fi  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-6834 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21943287; PMCID:PMC3193024 Approved no  
  Call Number refbase @ user @ Serial 12985  
Permanent link to this record
 

 
Author Granskog, M.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Vainio, J. url  doi
openurl 
  Title Sea ice in the Baltic Sea – A review Type Journal Article
  Year 2006 Publication Estuarine, Coastal and Shelf Science Abbreviated Journal Estuar Coast Shelf Sci  
  Volume 70 Issue (up) 1-2 Pages 145-160  
  Keywords sea ice; Baltic Sea; biogeochemistry; plankton; seasons  
  Abstract Although the seasonal ice cover of the Baltic Sea has many similarities to its oceanic counterpart in Polar Seas and Oceans, there are many unique characteristics that mainly result from the brackish waters from which the ice is formed, resulting in low bulk salinities and porosities. In addition, due to the milder climate than Polar regions, the annual maximum ice extent is highly variable, and rain and freeze-melt cycles can occur throughout winter. Up to 35% of the sea ice mass can be composed from metamorphic snow, rather than frozen seawater, and in places snow and superimposed ice can make up to 50% of the total ice thickness. There is pronounced atmospheric deposition of inorganic nutrients and heavy metals onto the ice, and in the Bothnian Bay it is estimated that 5% of the total annual flux of nitrogen and phosphorus and 20–40% of lead and cadmium may be deposited onto the ice fields from the atmosphere. It is yet unclear whether or not the ice is simply a passive store for atmospherically deposited compounds, or if they are transformed through photochemical processes or biological accumulation before released at ice and snow melt.As in Polar sea ice, the Baltic ice can harbour rich biological assemblages, both within the ice itself, and on the peripheries of the ice at the ice/water interface. Much progress has been made in recent years to study the composition of these assemblages as well as measuring biogeochemical processes within the ice related to those in underlying waters. The high dissolved organic matter loading of Baltic waters and ice result in the ice having quite different chemical characteristics than those known from Polar Oceans. The high dissolved organic material load is also responsible in large degree to shape the optical properties of Baltic Sea ice, with high absorption of solar radiation at shorter wavelengths, a prerequisite for active photochemistry of dissolved organic matter.Land-fast ice in the Baltic also greatly alters the mixing characteristics of river waters flowing into coastal waters. River plumes extend under the ice to a much greater distance, and with greater stability than in ice-free conditions. Under-ice plumes not only alter the mixing properties of the waters, but also result in changed ice growth dynamics, and ice biological assemblages, with the underside of the ice being encased, in the extreme case, with a frozen freshwater layer.There is a pronounced gradient in ice types from more saline ice in the south to freshwater ice in the north. The former is characteristically more porous and supports more ice-associated biology than the latter. Ice conditions also vary considerably in different parts of the Baltic Sea, with ice persisting for over half a year in the northernmost part of the Baltic Sea, the Bothnian Bay. In the southern Baltic Sea, ice appears only during severe winters.  
  Address Granskog: Arctic Centre, University of Lapland, P.O. Box 122, FI-96101 Rovaniemi, Finland  
  Corporate Author Thesis  
  Publisher Elsevier Science BV Place of Publication Amsterdam Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-7714 ISBN Medium  
  Area Baltic Sea Expedition Conference  
  Notes Review Approved no  
  Call Number refbase @ admin @ Granskog++2006 Serial 738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: