toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Thomas, D.N.; Lara, R.J.; Eicken, H.; Kattner, G.; Skoog, A. url  openurl
  Title Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics Type Journal Article
  Year 1995 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 15 Issue 6 Pages (down) 447-483  
  Keywords sea ice; Arctic; Dom  
  Abstract Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH?? and NO?? were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO?? was depleted, although not exhausted. High DOC and DON values in conjunction with high NH?? levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH?? and NO?? points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes D Approved no  
  Call Number refbase @ admin @ Thomas++1995 Serial 763  
Permanent link to this record
 

 
Author Thomas, D.N.; Dieckmann, G.S. (eds) url  isbn
openurl 
  Title Sea ice – an introduction to its physics, chemistry, biology and geology Type Book Whole
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages (down) 402 pp  
  Keywords Sea Ice  
  Abstract Sea ice, which covers up to 7% of the planet's surface, is a major component of the world's oceans, partly driving ocean circulation and global climate patterns. It provides a habitat for a rich diversity of marine organisms, and is a valuable source of information in studies of global climate change and the evolution of present day life forms. Increasingly, sea ice is being used as a proxy for extraterrestrial ice covered systems.

Sea Ice provides a comprehensive review of our current available knowledge of polar pack ice, the study of which is severely constrained by the logistic difficulties of working in such harsh and remote regions of the earth. The book's editors, Drs Thomas and Dieckmann have drawn together an impressive group of international contributing authors, providing a well-edited and integrated volume, which will stand for many years as the standard work on the subject. Contents of the book include details of the growth, microstructure and properties of sea ice, large-scale variations in thickness and characteristics, its primary production, micro-and macrobiology, sea ice as a habitat for birds and mammals, sea ice biogeochemistry, particulate flux, and the distribution and significance of palaeo sea ice.
 
  Address Thomas: School of Ocean Sciences, University of Wales, Bangor, UK; Dieckmann: Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany  
  Corporate Author Thesis  
  Publisher Blackwell Science Ltd Place of Publication Oxford Editor Thomas, D.N.; Dieckmann, G.S.  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-632-05808-0 Medium  
  Area Expedition Conference  
  Notes 40 Illustrations Approved yes  
  Call Number refbase @ user @ library-34/436/1 Serial 7  
Permanent link to this record
 

 
Author Weykam, G.; Thomas, D.N.; Wiencke, C. openurl 
  Title Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness Type Journal Article
  Year 1997 Publication Phycologia Abbreviated Journal Phycologia  
  Volume 36 Issue 5 Pages (down) 395-405  
  Keywords Winter; Polar waters; Photosynthesis; Antarctic zone; Ice cover; Seaweeds; Light effects; Plant physiology; Growth; Palmariales; Gigartinales; Iridaea cordata; Palmaria decipiens; Ps; Antarctica  
  Abstract Physiological and developmental responses during and following long-term exposure to darkness were investigated in the Antarctic red algae Palmaria decipiens and Iridaea cordata. Thalli were kept in darkness for a period of 6 mo, simulating winter sea ice cover. Subsequently, they were grown illuminated under seasonally fluctuating Antarctic daylengths. During darkness, P. decipiens, an Antarctic endemic, rapidly lost its ability to photosynthesize although chlorophyll a content remained fairly constant. The amount of floridean starch decreased gradually in the dark, with a sudden drop simultaneous with the development of new blades. After reexposure to light there was a rapid increase in photosynthetic oxygen production, whereas the rate of carbon assimilation increased more slowly, resulting in high apparent photosynthetic quotients. The increase in growth rate showed a close relation to carbon assimilation, suggesting that carbon is utilized first for growth, then for floridean starch accumulation. In contrast to P. decipiens, the photosynthetic rate of the Antarctic cold-temperate I. cordata was still about half of the initial rate after a dark period of 6 mo, i.e. the alga maintained functionality of its photosynthetic apparatus during winter. After reexposure to light there was a continuous increase in specific growth rate due to increasing photosynthetic activity. Iridaea cordata also accumulated floridean starch during summer, although in smaller amounts than P. decipiens. Together with the ability to photosynthesize, starch accumulation facilitates survival during extended dark periods in winter. The early development of blade initials and the rapid increase in photosynthetic capability after illumination may permit P. decipiens to use the period of high water transparency optimally in Antarctic spring. Iridaea cordata seems better able to survive prolonged dark periods in areas with less predictable light conditions. Both physiological patterns are well suited to the highly seasonal light conditions in Antarctica.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8884 ISBN Medium  
  Area Expedition Conference  
  Notes Marine Approved no  
  Call Number refbase @ admin @ Weykam++1997 Serial 767  
Permanent link to this record
 

 
Author Lakaniemi, A.-M.; Hulatt, C.J.; Wakeman, K.D.; Thomas, D.N.; Puhakka, J.A. url  doi
openurl 
  Title Eukaryotic and prokaryotic microbial communities during microalgal biomass production Type Journal Article
  Year 2012 Publication Bioresource Technology Abbreviated Journal Bioresour Technol  
  Volume 124 Issue Pages (down) 387-393  
  Keywords Bacteria/classification/genetics/metabolism; *Biomass; Electrophoresis, Polyacrylamide Gel; Eukaryotic Cells; Microalgae/*metabolism; Phylogeny; Polymerase Chain Reaction; Prokaryotic Cells  
  Abstract Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.  
  Address Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland. aino-maija.lakaniemi@tut.fi  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22995170 Approved no  
  Call Number refbase @ user @ Serial 12987  
Permanent link to this record
 

 
Author Giannelli, V.; Thomas, D.N.; Haas, C.; Kattner, G.; Kennedy, H.; Dieckmann, G.S. url  openurl
  Title Behaviour of dissolved organic matter and inorganic nutrients during experimental sea-ice formation Type Journal Article
  Year 2001 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 33 Issue 1 Pages (down) 317-321  
  Keywords  
  Abstract It is well established that during sea-ice formation, crystals aggregate into a solid matrix, and dissolved sea-water constituents, including inorganic nutrients, are rejected from the ice matrix. However, the behaviour of dissolved organic matter (DOM) during ice formation and growth has not been studied to date. DOM is the primary energetic substrate for microbial heterotrophic activity in sea water and sea ice, and therefore it is at the base of the trophic fluxes within the microbial food web. The aim of our study was to compare the behaviour of DOM and inorganic nutrients during formation and growth of sea ice. Experiments were conducted in a large indoor ice-tank facility (Hamburg Ship Model Basin, Germany) at -15°C. Three 1 m³ tanks, to which synthetic sea water, nutrients and dissolved organic compounds (diatom-extracted DOM) had been added, were sampled over a period of 5 days during sea-ice formation. Samples were collected throughout the experiment from water underlying the ice, and at the end from the ice as well. Brine was obtained from the ice by centrifuging ice cores. Inorganic nutrients (nitrate and phosphate) were substantially enriched in brine in comparison to water and ice phases, consistent with the processes of ice formation and brine rejection. Dissolved organic carbon (DOC) was also enriched in brine but was more variable and enriched in comparison to a dilution line. No difference in bacteria numbers was observed between water, ice and brine. No bacteria growth was measured, and this therefore had no influence on the measurable DOC levels. We conclude that the incorporation of dissolved organic compounds in newly forming ice is conservative. However, since the proportions of DOC in the brine were partially higher than those of the inorganic nutrients, concentrating effects of DOC in brine might be different compared to salts.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor Intl. Symp. on Sea Ice and its Interaction with the Ocean, A. and B., Fairbanks, Alaska(USA), 19-23 Jun 2000,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area Expedition Conference  
  Notes Conference Approved no  
  Call Number refbase @ admin @ Giannelli++2001 Serial 732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: