toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Granskog, M.A.; Kivi, K. url  openurl
  Title Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea Type Journal Article
  Year 2006 Publication Polar Biology Abbreviated Journal Polar Biol  
  Volume 30 Issue 2 Pages 183-197  
  Keywords  
  Abstract A study was undertaken to examine the activity and composition of the seasonal Baltic Sea land-fast sea-ice biota along a salinity gradient in March 2003 in a coastal location in the SW coast of Finland. Using a multi-variable data set, the less well-known algal and protozoan communities, and algal and bacterial production in relation to the physical and chemical environment were investigated. Also, the first coincident measurements of bacterial production and dissolved organic matter (DOM) in a sea-ice system are reported. Communities in sea ice were clearly autotrophy-dominated with algal biomass representing 79% of the total biomass. Protozoa and rotifers made up 18% of biomass in the ice and bacteria only 3%. Highest biomasses were found in mid-transect bottom ice. Water column assemblages were clearly more heterotrophic: 39% algae, 12% bacteria and 49% for rotifers and protozoa. Few significant correlations existed between DOM and bacterial variables, reflecting the complex origin of ice DOM. Dynamics of dissolved organic carbon, nitrogen and phosphorus (DOC, DON and DOP) were also uncoupled. A functional microbial loop is likely to be present in the studied ice. Existence of an under-ice freshwater plume affects the ecosystem functioning: Under-ice water communities are influenced directly by river-water mixing, whereas the ice system seems to be more independent–the interaction mainly taking place through the formation of active bottom communities.  
  Address  
  Corporate Author (down) Thesis  
  Publisher Springer-Verlag Place of Publication Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0722-4060 ISBN Medium  
  Area Expedition Conference  
  Notes Sampling: Nine stations along a 40km salinity gradient from inner Pojo Bay through the Archipelago to the edge of the open sea Approved no  
  Call Number refbase @ admin @ Kaartokallio++2006 Serial 744  
Permanent link to this record
 

 
Author Steffens, M.; Granskog, M.A.; Kaartokallio, H.; Kuosa, H.; Luodekari, K.; Papadimitriou, S.; Thomas, D.N. url  openurl
  Title Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea Type Conference Article
  Year 2006 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 44 Issue 1 Pages 80-87  
  Keywords Sea ice; Fast ice; Sea ice properties; Ice algae; Chlorophyll; Biogeochemistry; Nutrients (mineral); Particulate organic matter; Dissolved organic matter; Salinity; Spatial scale; Spatial variability; Horizontal patchiness; Sampling design; Brackish water; Ane; Baltic Sea; Gulf of Bothnia  
  Abstract Horizontal variation of landfast sea-ice properties was studied in the Gulf of Bothnia, Baltic Sea, during March 2004. In order to estimate their variability among and within different spatial levels, 72 ice cores were sampled on five spatial scales (with spacings of 10 cm, 2.5 m, 25 m, 250 m and 2.5 km) using a hierarchical sampling design. Entire cores were melted, and bulk-ice salinity, concentrations of chlorophyll a (Chl a), phaeophytin (Phaeo), dissolved nitrate plus nitrite (DIN) as well as dissolved organic carbon (DOC) and nitrogen (DON) were determined. All sampling sites were covered by a 5.5-23 cm thick layer of snow. Ice thicknesses of cores varied from 26 to 58 cm, with bulk-ice salinities ranging between 0.2 and 0.7 as is typical for Baltic Sea ice. Observed values for Chl a (range: 0.8-6.0 μg Chl a l-1; median: 2.9 μg Chl a l -1) and DOC (range: 37-397 μM; median: 95 μM) were comparable to values reported by previous sea-ice studies from the Baltic Sea. Analysis of variance among different spatial levels revealed significant differences on the 2.5 km scale for ice thickness, DOC and Phaeo (with the latter two being positively correlated with ice thickness). For salinity and Chl a, the 250 m scale was found to be the largest scale where significant differences could be detected, while snow depth only varied significantly on the 25 m scale. Variability on the 2.5 m scale contributed significantly to the total variation for ice thickness, salinity, Chl a and DIN. In the case of DON, none of the investigated levels exhibited variation that was significantly different from the considerable amount of variation found between replicate cores. Results from a principal component analysis suggest that ice thickness is one of the main elements structuring the investigated ice habitat on a large scale, while snow depth, nutrients and salinity seem to be of secondary importance.  
  Address  
  Corporate Author (down) Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area Baltic Sea; Gulf of Bothnia Expedition Conference International Symposium on Sea Ice, Dunedin (New Zealand), 5-9 Dec 2005  
  Notes Approved no  
  Call Number refbase @ admin @ Steffens++2006 Serial 754  
Permanent link to this record
 

 
Author Thomas, D.N. url  doi
openurl 
  Title Photosynthetic microbes in freezing deserts Type Journal Article
  Year 2005 Publication Trends in Microbiology Abbreviated Journal Trends Microbiol  
  Volume 13 Issue 3 Pages 87-88  
  Keywords  
  Abstract Polar deserts are not devoid of life despite the extreme low temperature and scarcity of water. Recently, patterned stone fields – caused by periglacial activity – have been surveyed in the Arctic and Antarctic. It was found that the productivity of the cyanobacteria and algae (hypoliths) that colonise the underside of the stones is strongly related to the pattern of the stones. The hypolith assemblages were in some cases as productive as lichens, bryophytes and plants that resided nearby.  
  Address  
  Corporate Author (down) Thesis  
  Publisher Elsevier Science B.V. Place of Publication Amsterdam Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-842X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ admin @ Thomas2005 Serial 755  
Permanent link to this record
 

 
Author Stedmon, C.A.; Thomas, D.N.; Granskog, M.; Kaartokallio, H.; Papadimitriou, S.; Kuosa, H. url  openurl
  Title Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Type Journal Article
  Year 2007 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 41 Issue 21 Pages 7273-7279  
  Keywords Carbon/analysis; *Humic Substances; Ice Cover/*chemistry; Nitrogen/analysis; Oceans and Seas; Spectrometry, Fluorescence  
  Abstract The origin of dissolved organic matter (DOM) within sea ice in coastal waters of the Baltic Sea was investigated using parallel factor (PARAFAC) analysis of DOM fluorescence. Sea ice DOM had distinctly different fluorescence characteristics than that of the underlying humic-rich waters and was dominated by protein-like fluorescence signals. PARAFAC analysis identified five fluorescent components, all of which were present in both sea ice and water. Three humic components were negatively correlated to salinity and concluded to be terrestrially derived material. Baltic Sea ice DOM was found to be a mixture of humic material from the underlying water column incorporated during ice formation and autochthonous material produced by organisms within the ice. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were correlated to the humic fluorescence, indicating that the majority of the organic carbon and nitrogen in Baltic Sea ice is bound in terrestrial humic material trapped within the ice. This has implications for our understanding of sea ice carbon cycling in regions influenced by riverine input (e.g., Baltic and Arctic coastal waters), as the susceptibility of DOM to degradation and remineralization is largely determined by its source.  
  Address Department of Marine Ecology, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, 4000 Roskilde, Denmark. cst@dmu.dk  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18044499 Approved no  
  Call Number refbase @ user @ Serial 12979  
Permanent link to this record
 

 
Author Hulatt, C.J.; Thomas, D.N. url  doi
openurl 
  Title Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Type Journal Article
  Year 2010 Publication Bioresource Technology Abbreviated Journal Bioresour Technol  
  Volume 101 Issue 22 Pages 8690-8697  
  Keywords Bioreactors/*microbiology; Chlorella vulgaris/*physiology; Culture Media/chemistry; *Electric Power Supplies; Energy Transfer; Organic Chemicals/*chemistry/*metabolism; Photochemistry/*instrumentation; Solubility  
  Abstract Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.  
  Address School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, UK. osp418@bangor.ac.uk  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20634058 Approved no  
  Call Number refbase @ user @ Serial 12981  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: