toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lakaniemi, A.-M.; Hulatt, C.J.; Wakeman, K.D.; Thomas, D.N.; Puhakka, J.A. url  doi
openurl 
  Title Eukaryotic and prokaryotic microbial communities during microalgal biomass production Type Journal Article
  Year 2012 Publication Bioresource Technology Abbreviated Journal Bioresour Technol  
  Volume 124 Issue Pages 387-393  
  Keywords Bacteria/classification/genetics/metabolism; *Biomass; Electrophoresis, Polyacrylamide Gel; Eukaryotic Cells; Microalgae/*metabolism; Phylogeny; Polymerase Chain Reaction; Prokaryotic Cells  
  Abstract Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.  
  Address Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland. aino-maija.lakaniemi@tut.fi  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Medium  
  Area (up) Expedition Conference  
  Notes PMID:22995170 Approved no  
  Call Number refbase @ user @ Serial 12987  
Permanent link to this record
 

 
Author Underwood, G.J.C.; Aslam, S.N.; Michel, C.; Niemi, A.; Norman, L.; Meiners, K.M.; Laybourn-Parry, J.; Paterson, H.; Thomas, D.N. url  doi
openurl 
  Title Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice Type Journal Article
  Year 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 110 Issue 39 Pages 15734-15739  
  Keywords Antarctic Regions; Arctic Regions; Biopolymers/*analysis; Carbohydrates/*analysis; Ice Cover/*chemistry; Models, Chemical; Molecular Weight; Solubility; algae; biogeochemistry; global relationships; microbial  
  Abstract Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.  
  Address School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom  
  Corporate Author Thesis  
  Publisher National Academy of Sciences Place of Publication Washington, DC Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area (up) Expedition Conference  
  Notes PMID:24019487; PMCID:PMC3785782 Approved no  
  Call Number refbase @ user @ Serial 17491  
Permanent link to this record
 

 
Author Granskog, M.; Kaartokallio, H.; Kuosa, H.; Thomas, D.N.; Vainio, J. url  doi
openurl 
  Title Sea ice in the Baltic Sea – A review Type Journal Article
  Year 2006 Publication Estuarine, Coastal and Shelf Science Abbreviated Journal Estuar Coast Shelf Sci  
  Volume 70 Issue 1-2 Pages 145-160  
  Keywords sea ice; Baltic Sea; biogeochemistry; plankton; seasons  
  Abstract Although the seasonal ice cover of the Baltic Sea has many similarities to its oceanic counterpart in Polar Seas and Oceans, there are many unique characteristics that mainly result from the brackish waters from which the ice is formed, resulting in low bulk salinities and porosities. In addition, due to the milder climate than Polar regions, the annual maximum ice extent is highly variable, and rain and freeze-melt cycles can occur throughout winter. Up to 35% of the sea ice mass can be composed from metamorphic snow, rather than frozen seawater, and in places snow and superimposed ice can make up to 50% of the total ice thickness. There is pronounced atmospheric deposition of inorganic nutrients and heavy metals onto the ice, and in the Bothnian Bay it is estimated that 5% of the total annual flux of nitrogen and phosphorus and 20–40% of lead and cadmium may be deposited onto the ice fields from the atmosphere. It is yet unclear whether or not the ice is simply a passive store for atmospherically deposited compounds, or if they are transformed through photochemical processes or biological accumulation before released at ice and snow melt.As in Polar sea ice, the Baltic ice can harbour rich biological assemblages, both within the ice itself, and on the peripheries of the ice at the ice/water interface. Much progress has been made in recent years to study the composition of these assemblages as well as measuring biogeochemical processes within the ice related to those in underlying waters. The high dissolved organic matter loading of Baltic waters and ice result in the ice having quite different chemical characteristics than those known from Polar Oceans. The high dissolved organic material load is also responsible in large degree to shape the optical properties of Baltic Sea ice, with high absorption of solar radiation at shorter wavelengths, a prerequisite for active photochemistry of dissolved organic matter.Land-fast ice in the Baltic also greatly alters the mixing characteristics of river waters flowing into coastal waters. River plumes extend under the ice to a much greater distance, and with greater stability than in ice-free conditions. Under-ice plumes not only alter the mixing properties of the waters, but also result in changed ice growth dynamics, and ice biological assemblages, with the underside of the ice being encased, in the extreme case, with a frozen freshwater layer.There is a pronounced gradient in ice types from more saline ice in the south to freshwater ice in the north. The former is characteristically more porous and supports more ice-associated biology than the latter. Ice conditions also vary considerably in different parts of the Baltic Sea, with ice persisting for over half a year in the northernmost part of the Baltic Sea, the Bothnian Bay. In the southern Baltic Sea, ice appears only during severe winters.  
  Address Granskog: Arctic Centre, University of Lapland, P.O. Box 122, FI-96101 Rovaniemi, Finland  
  Corporate Author Thesis  
  Publisher Elsevier Science BV Place of Publication Amsterdam Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-7714 ISBN Medium  
  Area (up) Baltic Sea Expedition Conference  
  Notes Review Approved no  
  Call Number refbase @ admin @ Granskog++2006 Serial 738  
Permanent link to this record
 

 
Author Granskog, M.A.; Virkkunen, K.; Thomas, D.N.; Ehn, J.; Kola, H.; Martma, T. url  openurl
  Title Chemical properties of brackish water ice in the Bothnian Bay, the Baltic Sea Type Journal Article
  Year 2004 Publication Journal of Glaciology Abbreviated Journal J Glaciol  
  Volume 50 Issue 169 Pages 292-302  
  Keywords Dependent Solute Redistribution; Dissolved Organic Matter; Phase Boundary; Sulfate; Binding; Summer; Oxygen; Core; Gulf  
  Abstract The behavior of majors, δ18O, dissolved organic carbon (DOC) and trace elements was studied during the initial freezing of low-saline water (3 practical salinity units) in a freezing experiment. Samples were also collected from first-year sea ice from pack ice in the Bothnian Bay, northern Baltic Sea. During initial ice formation, the major-ion ratios in sea ice indicated variable behavior, with some ions showing relative enrichment (sulfate, calcium and magnesium), conservative behavior (sodium) or relative depletion (potassium) compared to sea water at the same salinity DOC, iron and aluminum showed enrichment in the ice, while zinc was depleted to salinity. Lead was detected in surface snow-ice layers only, implying atmospheric accumulation. First-year sea ice, with a variable growth and thermal history, showed behavior for major ions similar to that observed in new ice. However, for trace elements the picture was much more complicated, most likely due to active secondary processes such as atmospheric supply and biological activity. Ice growth has a potential impact on the chemical budgets and cycling of some elements, especially those which are selectively rejected/retained during sea-ice formation, particularly in the shallow parts of the Bothnian Bay covered with a land-fast ice cover.  
  Address Granskog: Univ Helsinki, Dept Phys Sci, Div Geophys, FIN-00014 Helsinki, Finland  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1430 ISBN Medium  
  Area (up) Baltic Sea; Bothnian Bay Expedition Conference  
  Notes ISI:000227720900014 Approved no  
  Call Number refbase @ admin @ Granskog++2004 Serial 741  
Permanent link to this record
 

 
Author Steffens, M.; Granskog, M.A.; Kaartokallio, H.; Kuosa, H.; Luodekari, K.; Papadimitriou, S.; Thomas, D.N. url  openurl
  Title Spatial variation of biogeochemical properties of landfast sea ice in the Gulf of Bothnia, Baltic Sea Type Conference Article
  Year 2006 Publication Annals of Glaciology Abbreviated Journal Ann Glaciol  
  Volume 44 Issue 1 Pages 80-87  
  Keywords Sea ice; Fast ice; Sea ice properties; Ice algae; Chlorophyll; Biogeochemistry; Nutrients (mineral); Particulate organic matter; Dissolved organic matter; Salinity; Spatial scale; Spatial variability; Horizontal patchiness; Sampling design; Brackish water; Ane; Baltic Sea; Gulf of Bothnia  
  Abstract Horizontal variation of landfast sea-ice properties was studied in the Gulf of Bothnia, Baltic Sea, during March 2004. In order to estimate their variability among and within different spatial levels, 72 ice cores were sampled on five spatial scales (with spacings of 10 cm, 2.5 m, 25 m, 250 m and 2.5 km) using a hierarchical sampling design. Entire cores were melted, and bulk-ice salinity, concentrations of chlorophyll a (Chl a), phaeophytin (Phaeo), dissolved nitrate plus nitrite (DIN) as well as dissolved organic carbon (DOC) and nitrogen (DON) were determined. All sampling sites were covered by a 5.5-23 cm thick layer of snow. Ice thicknesses of cores varied from 26 to 58 cm, with bulk-ice salinities ranging between 0.2 and 0.7 as is typical for Baltic Sea ice. Observed values for Chl a (range: 0.8-6.0 μg Chl a l-1; median: 2.9 μg Chl a l -1) and DOC (range: 37-397 μM; median: 95 μM) were comparable to values reported by previous sea-ice studies from the Baltic Sea. Analysis of variance among different spatial levels revealed significant differences on the 2.5 km scale for ice thickness, DOC and Phaeo (with the latter two being positively correlated with ice thickness). For salinity and Chl a, the 250 m scale was found to be the largest scale where significant differences could be detected, while snow depth only varied significantly on the 25 m scale. Variability on the 2.5 m scale contributed significantly to the total variation for ice thickness, salinity, Chl a and DIN. In the case of DON, none of the investigated levels exhibited variation that was significantly different from the considerable amount of variation found between replicate cores. Results from a principal component analysis suggest that ice thickness is one of the main elements structuring the investigated ice habitat on a large scale, while snow depth, nutrients and salinity seem to be of secondary importance.  
  Address  
  Corporate Author Thesis  
  Publisher International Glaciological Society Place of Publication Cambridge Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0260-3055 ISBN Medium  
  Area (up) Baltic Sea; Gulf of Bothnia Expedition Conference International Symposium on Sea Ice, Dunedin (New Zealand), 5-9 Dec 2005  
  Notes Approved no  
  Call Number refbase @ admin @ Steffens++2006 Serial 754  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: